Molecular and General Genetics MGG

, Volume 196, Issue 3, pp 533–536 | Cite as

The pAtC58 plasmid of Agrobacterium tumefaciens is not essential for tumour induction

  • Charles Rosenberg
  • Thierry Huguet
Short Communication

Summary

When the 225 kilobase (kb) cryptic plasmid of Rhizobium meliloti 41 is introduced into Agrobacterium tumefaciens C58, the resident plasmid pAtC58 (410 kb) is lost, probably because of incompatibility. The strain of A. tumefaciens cured of pAtC58 is still oncogenic, showing that pAtC58 does not control functions essential for tumour formation in the tomato and in Kalanchoe daigremontiana.

Keywords

Rhizobium Tumour Formation Agrobacterium Agrobacterium Tumefaciens Tumour Induction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha I, Kondorosi A (1981) Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Mol Gen Genet 184:334–339Google Scholar
  2. Barth PT (1979) RP4 and R300B as wide host-range plasmid cloning vehicles. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental and commercial importance. Elsevier/North Holland Biomedical Press, Amsterdam, pp 399–410Google Scholar
  3. Brewin NJ, Beringer JE, Buchanan-Wollatson AV, Johnston AWB, Hirsh PR (1980) Transfer of bacteriocinogenic plasmids in Rhizobium leguminosarum. J Gen Microbiol 116:261–270Google Scholar
  4. Casse F, Boucher C, Julliot JS, Michel M, Dénarié J (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242Google Scholar
  5. Datta N, Hedges RW, Shaw EJ, Sykes RB, Richmond MH (1971) Properties of an R factor from Pseudomonas aeruginosa. J Bacteriol 108:1244–1249Google Scholar
  6. Dénarié J, Boistard P, Casse-Delbart F, Atherly AG, Berry JO, Russel P (1982) Indigenous plasmids of Rhizobium. In: Atherly AG (ed) Biology of the Rhizobiaceae. Academic Press, New York, pp 225–246Google Scholar
  7. Farrand SK, Kado CI, Ireland CR (1981) Suppression of tumorigenicity by the IncW R plasmid pSa in Agrobacterium tumefaciens. Mol Gen Genet 181:44–51Google Scholar
  8. Hooykaas PJJ (1984) Expression of Sym-plasmids in rhizobia and agrobacteria. In: Veeger C, Newton WE (eds) Proceedings of the fifth international symposium on nitrogen fixation. Elsevier/North Holland Biomedical Press, Amsterdam (in press)Google Scholar
  9. Huguet T, Rosenberg C, Casse-Delbart F, De Lajudie P, Jouanin L, Batut J, Boistard J, Julliot JS, Dénarié J (1983) Studies on Rhizobium meliloti plasmids and their role in the control of nodule formation and nitrogen fixation. I. The pSym megaplasmid and the other large plasmids. In: Pülher A (ed) Molecular genetics of the bacteria plant interaction. Springer-Verlag, Berlin Heidelberg New York, pp 35–45Google Scholar
  10. Johnston AWB, Hombrecher G, Brewin NJ, Cooper MC (1982) Two transmissible plasmids in Rhizobium leguminosarum strain 300. J Gen Microbiol 128:85–93Google Scholar
  11. Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626Google Scholar
  12. Nuti MP, Ledeboer AM, Lepidi AA, Schilperoort RA (1977) Large plasmids in different Rhizobium species. J Gen Microbiol 100:241–248Google Scholar
  13. Rosenberg C, Boistard P, Dénarié J, Casse-Delbart F (1981) Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genet 184:326–333Google Scholar
  14. Rosenberg C, Casse-Delbart F, David M, Dusha I, Boucher C (1982) Megaplasmids in plant-associated bacteria Rhizobium meliloti and Pseudomonas solanacearum. J Bacteriol 150:402–406Google Scholar
  15. Schell J, Van Montagu M, Depicker A, De Waele D, Engler G, Genetello C, Hernalsteens JP, Holsters M, Messens E, Silva A, Van der Elsacker S, Van Larebeke N, Zaenen I (1976) Agrobacterium tumefaciens. What segment of the plasmid is responsible for the induction of crown gall tumors. In: Bogorad L, Weil JH (eds) Nucleic acids and protein synthesis in plants. Plenum, New York, pp 329–342Google Scholar
  16. Truchet G, Rosenberg C, Vasse J, Julliot JS, Camut S, Dénarié J (1984) Transfer of Rhizobium meliloti pSym genes in Agrobacterium tumefaciens: Host-specific nodulation by atypical infection. J Bacteriol 157:134–142Google Scholar
  17. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown-gall inducing ability. Nature 252:169–170Google Scholar
  18. Van Montagu M, Schell J (1979) The plasmids of Agrobacterium tumefaciens. In: Timmis KN, Pülher A (eds) Plasmids of medical, environmental and commercial importance. Elsevier/North Holland Biomedical Press, Amsterdam, pp 71–95Google Scholar
  19. Zaenen I, Van Larebeke N, Teuchy H, Van Montagu M, Schell J (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 86:109–127Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Charles Rosenberg
    • 1
  • Thierry Huguet
    • 1
  1. 1.Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, C.N.R.S.-I.N.R.A.Groupement Scientifique Microbiologie ToulouseCastanet-TolosanFrance

Personalised recommendations