Archives of orthopaedic and traumatic surgery

, Volume 102, Issue 4, pp 242–247 | Cite as

The stability of union in tibial shaft fractures: Its measurement by a non-invasive method

  • Edholm P. 
  • R. Hammer
  • S. Hammerby
  • B. Lindholm
Original Articles


The stability of the union in tibial shaft fractures was followed by repeated non-invasive radiographic measurement of a deflection induced in the area of the fracture. By means of a Shift Comparator the difference in the angle between the two fragments before and during application of the deflecting force can be measured. The relative measure of the strength of the union is furnished by a quantity, the deflection ratio, which is based on the quotient of the induced deflection by the magnitude of the applied bending moment. When this ratio falls below a certain value the union is considered to be stable enough for full weight bearing during walking. A plot of the deflection ratio against time, with logarithmic scales on both axes had a negative slope and was more or less linear. This graph can serve as an aid in detecting the course of union, in deciding when the cast should be removed, and in detecting any irregularity in the process of union. In the management of 207 fractures of the tibial shaft 508 such deflection measurements were performed.


Public Health Logarithmic Scale Relative Measure Weight Bearing Negative Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Stabilitätsentwicklung von 207 Tibiafrakturen wurde mit einer nichtinvasiven Untersuchung verfolgt. Vom Unterschenkel werden in einem standardisierten Verfahren ap-Röntgenaufnahmen mit und ohne Biegemoment gemacht. Diese werden in einem optischen Apparat (Komparoscop) verglichen. Der Deformationswinkel kann so mit großer Sicherheit bestimmt werden. Aus dem Biegemoment und dem Winkel ergibt sich eine Druck-Deformationsbeziehung. Dieser Wert wird für das Gewicht des Patienten korrigiert. Wir nennen ihn „Deflektionsrate”. Nach unseren Erfahrungen ist die Stabilität bei kleineren Werten als 0,08 für volle Belastung beim Gehen ausreichend. Die „D-Raten” werden in ein doppellogarithmisches Koordinatensystem eingetragen. Die meisten Frakturen zeigten dabei eine gradlinige Stabilitätsentwicklung. Ein Abweichen vom geraden Verlauf ist als Hinweis auf eine Pseudarthrosenentwicklung zu verwerten.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer GCH, Edwards P, Widmark PH (1962) Shaft fractures of the tibia. Etiology of poor results in a consecutive series of 173 fractures. Acta Chir Scand 124:386–395Google Scholar
  2. 2.
    Brown PW (1974) The early weight-bearing treatment of tibial shaft fractures. Clin Orthop 105:167–178Google Scholar
  3. 3.
    Carter D, Spengler D (1978) Section III. Basic science and pathology. Mechanical properties and composition of cortical bone. Clin Orthop 135:192–217Google Scholar
  4. 4.
    Edholm P, Hammer R, Hammerby S, Lindholm B (1983) Comparison of radiographic images; a new method for analysis of very small movements. Acta Radiol Scand 24:267–272Google Scholar
  5. 5.
    Edwards P, Nilsson BER (1965) Graphic representation of healing time in fractures of the shaft of the tibia. Acta Orthop Scand 36:104–111Google Scholar
  6. 6.
    Edwards P (1965) Fracture of the shaft of the tibia: 495 consecutive cases in adults. Acta Orthop Scand [Suppl]Google Scholar
  7. 7.
    Hayes WC (1980) Biomechanics of fracture treatment. In: Heppenstahl RB (ed) Fracture treatment and healing. Saunders, Philadelphia, pp 124–172Google Scholar
  8. 8.
    Jernberger A (1970) Measurement of stability of tibial fractures. A mechanical method. Acta Orthop Scand [Suppl] 135Google Scholar
  9. 9.
    Jörgensen TE (1972) Measurements of stability of crural fractures treated with Hoffman-osteotaxis. II. Measurements on crural fractures. Acta Orthop Scand 43:207–218. —III. The uncomplicated terminal phase of healing of crural fractures. Acta Orthop Scand 43:264–279.— IV. The complicated terminal phase of healing of crural fractures. Acta Orthop Scand 43:280–291Google Scholar
  10. 10.
    Karlström G, Olerud S (1974) Fractures of the tibial shaft-a critical evaluation of treatment alternatives. Clin Orthop 105:82–115Google Scholar
  11. 11.
    Matthews LS, Kaufer H, Sonstegard DA (1974) Manual sensing of fracture stability. A biomechanical study. Acta Orthop Scand 45:373–381Google Scholar
  12. 12.
    Nicoll EA (1964) Fractures of the tibial shaft, a survey of 705 cases. J Bone Joint Surg [Br] 46:373–387Google Scholar
  13. 13.
    Nicholls PJ, Berg E, Bliven FE, Kling JM (1979) X-ray diagnosis of healing fractures in rabbit. Clin Orthop 142:234–236Google Scholar
  14. 14.
    Watson-Jones R, Coltart WD (1943) Slow union of fractures with a study of 804 fractures of the shafts of the tibia and femur. Br J Surg 30:260–276Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Edholm P. 
    • 1
  • R. Hammer
    • 2
  • S. Hammerby
    • 1
  • B. Lindholm
    • 1
  1. 1.Department of Diagnostic RadiologyLinköping University Medical SchoolLinköpingSweden
  2. 2.Department of Orthopedic SurgeryLinköping University Medical SchoolLinköpingSweden

Personalised recommendations