Current Genetics

, Volume 2, Issue 3, pp 193–200 | Cite as

Control of recombination within and between DNA plasmids of Saccharomyces cerevisiae

  • Melanie J. Dobson
  • A. Bruce Futcher
  • Brian S. Cox


[2 μm+ and [2μm°] yeast were transformed to stable leucine prototrophy with the hybrid yeast — E. coli plasmid, pJDB219. This plasmid contains the entire sequence of the endogenous 2 μm yeast DNA plasmid in addition to the yeast nuclear LEU2+ gene and the Co1E1 derivative, pMB9. In the [2 μm+] transformants, a new wholly yeast LEU2+ plasmid, pYX, was generated, probably by a recombination event between pJDB219 and 2 μm DNA. The plamid, pYX, in the absence of 2 μm DNA, was found to exist in equimolar amounts of two forms, A and B, which probably arise by intramolecular recombination across the inverted repeat sequences of the 2 μm DNA portion of the plasmid. pJDB219 was found to require the presence of 2 μm DNA to undergo this intramolecular recombination. The results suggest that 2, μm DNA and pYX code for a gene product required in this recombination event which pJDB219 cannot produce.

Key words

Recombination Plasmids Transformation Yeast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson EH (1946) Proc Natl Acad Sci USA 32:120–122Google Scholar
  2. Arthur A, Sherratt D (1979) Mot Gen Genet 175:267–274Google Scholar
  3. Beggs JD (1978) Nature 275:104–109Google Scholar
  4. Blanc H, Gerbaud C, Slonimski P, Guerineau M (1979) Mot Gen Genet 176:335–342Google Scholar
  5. Broach J, Atkins J, McGill C, Chow L (1979) Cell 16:827–839Google Scholar
  6. Cameron J, Loh E, Davis R (1979) Cell 16:739–751Google Scholar
  7. Clark-Walker G, Miklos G (1974) Eur J Biochem 41:359–365Google Scholar
  8. Clewell DR, Helinski DR (1969) Proc Natl Acad Sci USA 62:1159–1166Google Scholar
  9. Conde J, Fink GR (1976) Proc Natl Acad Sci USA 73:3651–3655Google Scholar
  10. Cryer DR, Eccleshall R, Marmur J (1975) Meth Cell Biol 12:39–44Google Scholar
  11. Denhardt DT (1966) Biochem Biophys Res Commun 23:641–646Google Scholar
  12. Dobson MJ, Futcher AB, Cox BS (1980) Curr Gen 2:201–205Google Scholar
  13. Faye G, Dennebouy N, Kujawa C, Jacq C (1979) Mot Gen Genet 168:101–109Google Scholar
  14. Gottesman M, Weisberg R (1971) In: Hershey AD (ed) The bacteriophage lambda. Cold Spring Harbor Laboratory, New York, p 113Google Scholar
  15. Guerineau M, Grandchamp C, Slonimski P (1976) Proc Natl Acad Sci USA 73:3030–3034Google Scholar
  16. Hinnen A, Hicks J, Fink G (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  17. Hurst DD, Fogel S (1964) Genetics 50:335–358Google Scholar
  18. Lederberg EM, Cohen SN (1974) J Bacteriol 119:1072–1074Google Scholar
  19. Lennox ES (1975) Virology 1:190–206Google Scholar
  20. Livingston D (1977) Genetics 86:73–84Google Scholar
  21. Livingston D, Klein H (1977) J Bacteriol 129:472–481Google Scholar
  22. Perlman PS, Birky CW (1974) Proc Natl Acad Sci USA 71:4612–4616Google Scholar
  23. Philippsen P, Streeck R, Zachau H, Muller W (1975) Eur J Biochem 57:55–68Google Scholar
  24. Schachat F, Hogness D (1974) Cold Spring Harbor Symp Quant Biol 38:371–381Google Scholar
  25. Sinclair J, Stevens B, Sanghavi P, Rabinowitz M (1967) Science 156:1234–1237Google Scholar
  26. Storms R, McNeil J, Khandekar P, Parker J, An G, Friesen J (1979) J Bacteriol 140:73–82Google Scholar
  27. Strausberg RL, Vincent RD, Perlman PS, Butow RA (1978) Nature 276:577–583Google Scholar
  28. Struhl K, Stinchcomb D, Scherer S, Davis R (1979) Proc Natl Acad Sci USA 76:1035–1039Google Scholar
  29. Thomas M, Davis R (1975) J Mot Biol 91:315–328Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Melanie J. Dobson
    • 1
  • A. Bruce Futcher
    • 1
  • Brian S. Cox
    • 1
  1. 1.Botany SchoolOxfordEngland

Personalised recommendations