Archives of orthopaedic and traumatic surgery

, Volume 103, Issue 3, pp 201–211 | Cite as

On the pathogenesis of spondylosis deformans and arthrosis uncovertebralis: Comparative form-analytical radiological and statistical studies on lumbar and cervical vertebral bodies

  • H. -J. Pesch
  • W. Bischoff
  • Th. Becker
  • H. Seibold
Original Articles


To investigate the etiopathogenesis of the common clinical symptoms of the lower lumbar spine (LS) and cervical spine (CS) (lower back pain and local cervical spine syndrome), the dimensions of the third to fifth lumbar vertebral bodies (LVB) and the fifth to seventh cervical vertebral bodies (CVB) were studied quantitatively and morphometrically in frontal and sagittal planes, as a function of sex and age, in 105 human cadavers of both sexes aged between 16 and 91 years. The evaluation was done in X-ray pictures of 100-μm-thick polished bone sections with the aid of the Macro Facility of the Leitz Texture Analysis System. In each case, the maximum and minimum heights and widths and depths and the computed differences in heights, widths, and depths were determined. The results were evaluated statistically and compared within and between the two regions of the spine, using regression-correlation analyses. The heights, widths, and depths of the VB are all greater in men than in women; their behavior during ageing is, however, identical for both sexes. The heights of all the VB examined remain constant throughout life after termination of growth. The maximun widths and the width differences reveal an increase in both LVB and CVB in old age. All depth parameters reveal constancy in the case of the LVB but an increase in the case of the CVB in old age. The correlation coefficients of the maximum width of the VB within the spinal regions are very high in the LVB, but lower in the CVB. Between the two regions, in contrast, they are very low. This behavior suggests a superordinate action principle within each of the spinal regions which is based on characteristic anatomical construction and functional stressing. The static stressing of the LVB leads, laterally to disc protrusions. As a result of this, traction forces acting on the weak lateral elements of the anterior longitudinal ligament, stimulate the accretion of spondylotic osteophytes at the point of insertion of the ligament on the vertebral body. Anteriorly, in contrast, the particular strong anterior longitudinal ligament prevents such a remodelling process. Posteriorly, the longitudinal ligament is attached to the intervertebral discs, and can thus not stimulate the vertebral body to produce osteophytes. The dynamic stressing of the CVB leads laterally to friction between the VB in the region of the uncovertebral joints and to the formation of arthrotic osteophytes. Anteriorly, owing to the weak configuration of the anterior longitudinal ligament in this aspect, disc protrusion occur and, subsequently, spondylotic osteophytes accrete. Posteriorly, the (posterior) longitudinal ligament is also attached to the intervertebral discs, and can thus provide no ossification stimulus. Lateral arthrotic and anterior spondylotic osteophytes at the CVB are thus the result of etiopathogenetically different processes, and can occur independently of each other. The also differing etiopathogenesis of lateral osteophytes in the case of the LVB and CVB, presenting as spondylosis or arthrosis, also finds statistical expression in a very small correlation of the maximum widths of the VB in both regions of the spine. Spondylotic osteophytes occurring laterally at the LVB and anteriorly at the CVB do not of themselves cause clinical symptoms. These are rather a sequela of motion segment instability, where overloading of the supporting structures can give rise to a local chronic spinal syndrome. Arthrotic osteophytes occurring laterally on the CVB, in contrast, can, as a result of the pressure twenty-three consecutive patients aged 33–80 years with a presumed Sudeck's syndrome of one hand or one foot were seen. A fracture initiated the syndrome in three-quarters of them, and the median duration of suffering was 3.5 months in the hand and 7 months in the foot. Osteoporosis and marked 99mTc-labeled methylene diphosphonate uptake were seen in radiographs and scintigrams respectively. Thirteen of the patients were operatively treated; distal fasciotomy on the volar aspect of the forearm or the ventral aspect of the lower leg gave rapid relief from pain at rest in nine of ten patients thus affected. All the patients became symptom-free, except two who underwent closed treatment. At follow-up 2–8 years later radiographic and scintigraphic findings were usually normal.


Cervical Spine Intervertebral Disc Spondylosis Spinal Region Anterior Longitudinal Ligament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright F, Blommberg E, Smith RH (1940) Postmenopausal osteoporosis. Trans Ass Am Phys 55:298Google Scholar
  2. Barnett E, Nordin B (1960) The radiological diagnosis of osteoporosis. A new approach. Clin Radiol 11:166Google Scholar
  3. Bartelheimer H, Schmitt-Rohde JM (1956) Osteoporose als Krankheitsgeschehen. Ergeb Med Kinderheilkd NF 7:454Google Scholar
  4. Benninghoff A (1954) Lehrbuch der Anatomie des Menschen, Bd I. Urban und Schwarzenberg, Berlin MünchenGoogle Scholar
  5. Beutel P, Küffner H, Röck W, Schubö W (1978) Statistical package for the social sciences. Fischer, Stuttgart New YorkGoogle Scholar
  6. Bowden R (1966) The applied anatomy of the cervical spine and brachial plexus. Proc R Soc Med 59:1147Google Scholar
  7. Braus H (1921) Anatomic des Menschen, Bd 1. Springer, BerlinGoogle Scholar
  8. Buytendijk FJJ (1956) Allgemeine Theorie der menschlichen Haltung und Bewegung. Springer, Berlin Göttingen HeidelbergGoogle Scholar
  9. Delling G (1973) Age-related bone changes. Histomorphometric investigation of structure of human cancellous bone. Cuff Top Pathol 58:117Google Scholar
  10. Delling G (1974) Altersabhängige Skeletveränderungen. Klin Wochenschr 52:318Google Scholar
  11. Ecklin U (1960) Die Halswirbelsäule. Springer, Berlin Göttingen HeidelbergGoogle Scholar
  12. Eger W, Gerner HJ, Kämmerer H (1967) Bau und Dichte der menschlichen Spongiosa in Rippe, Wirbel and Becken als Ausdruck der statischen Funktion. Arch Orthop Unfall Chir 62:97Google Scholar
  13. Epp W (1950) Die Spondylosis deformans der Halswirbelsäule. Diss, ZürichGoogle Scholar
  14. Exner G (1954) Die Halswirbelsäule. Thieme, StuttgartGoogle Scholar
  15. Francis C (1956) Certain changes in the aged white cervical spine. Anat Rec 125:783Google Scholar
  16. Friedenberg Z, Miller (1963) Degenerative disc disease of the cervical spine. J Bone Joint Surg [Am] 45:1171Google Scholar
  17. Friedenberg Z, Eideken, Spencer, Tolentino (1959) Degenerative changes in the cervical spine. J Bone Joint Surg [Am] 41:61Google Scholar
  18. Frost HM (1963) Bone remodelling dynamics. Thomas, Springfield (Ill)Google Scholar
  19. Frykholm R (1951) Lower cervical vertebrae and intervertebral discs. Surgical anatomy and pathology. Acta Chir Scand 101:345Google Scholar
  20. Giraudi G (1931) L'artrosi deformante uncovertebrale. Radiol Med, TorinoGoogle Scholar
  21. von Glass W, Pesch H-J (1983) Zum Ossifikationsprinzip des Kehlkopfskelets von Mensch und Säugetieren. Acta Anat 116:153Google Scholar
  22. Gregerson GG, Lucas DB (1967) An in-vivo study of the axial rotation of the human thoracolumbar spine. J Bone Joint Surg [Am] 49:247Google Scholar
  23. ten Have H (1978) Voor-achterwaartse Beweeglijkheid en Afwijkingen van de Halswervelkolom. Diss, LeidenGoogle Scholar
  24. Henschke F, Pesch H-J (1978) Kunststoffeinbettung im Knochenlabor. Präparative Voraussetzungen zur Schnitt- und Schlifftechnik. MTA 5:211Google Scholar
  25. Hirsch C, Schajowicz, Galante (1967) Structural changes in the cervical spine. Acta Orthop Scand [Suppl] 109Google Scholar
  26. Idelberger K (1975) Lehrbuch der Orthopädie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Isaacson PR (1979) Living anatomy: an anatomic basis for the osteopathic concept. JAOA 79:745Google Scholar
  28. Jesserer H (1975) Osteoporose: Pathologie, Klinik und Therapie. Therapiewoche 29:2970Google Scholar
  29. Jesserer H (1978) Osteoporose. Rhein Ärztebl 16a:619Google Scholar
  30. Johnson R, Crellin, White, Panjabi, Soutwick (1975) Some new observations on the functional anatomy of the lower cervical spine. Clin Orthop 111:192Google Scholar
  31. Krämer J (1978) Bandscheibenbedingte Erkrankungen. Thieme, StuttgartGoogle Scholar
  32. Krogdahl T, Torgersen (1940) Uncovertebralgelenk und Arthrosis deformans uncovertebralis. Acta Radiol (Stockh) 21:23Google Scholar
  33. Kummer B (1962) Funktioneller Bau und funktionelle Anpassung des Knochens. Anat Anz 110:261Google Scholar
  34. Lauer G (1980) Zur mechanisch orientierten Elastizität spongiöser Knochen. Eine vergleichende Strukturanalyse. Diss, ErlangenGoogle Scholar
  35. Lippert H (1966) Anatomie der Wirbelsaule unter Aspekten von Entwicklung und Funktion. Med Klin 61:41Google Scholar
  36. Lyon E (1945) Uncovertebral osteophytes and osteochondrosis of the cervical spine. J Bone Joint Surg 27, Nr 2Google Scholar
  37. Nathan H (1962) Osteophytes of the vertebral column. J Bone Joint Surg [Am] 44:243Google Scholar
  38. Pauwels F (1965) Gesammelte Abhandlungen zur funktionellen Anatomic des Bewegungsapparates. Springer, Berlin Heidelberg New YorkGoogle Scholar
  39. Payne E, Spillane (1957) The cervical spine: an anatomicopathological study of 70 specimens with particular reference to the problem of cervical spondylosis. Brain 80:571Google Scholar
  40. Penning L (1978) Normal movements of the cervical spine. Am J Roentgenol 130:317Google Scholar
  41. Pesch H-J, Henschke F, Seibold H (1977) EinfluB von Mechanik und Alter auf den Spongiosaumbau in Lendenwirbelkörpern und im Schenkelhals. Virchows Arch A Pathol Histol 377:27Google Scholar
  42. Pesch H-J, Günther CC, Strauß HJ (1980a) Die diaphysäre Verlängerungsosteotomie an Katzenfemora. Z Orthop 118:768Google Scholar
  43. Pesch H-J, Scharf HP, Lauer G, Seibold H (1980b) Der altersabhängige Verbundbau der Lendenwirbelkörper. Virchows Arch A Pathol Anat Histol 386:21Google Scholar
  44. Pesch H-J, Becker Th, Bischoff W, Seibold H (1985) Zur Relevanz der physiologischen Osteoporose and der sogenannten Osteoblasteninsuffizienz im Alter. Vergleichende radiologisch-morphometrische und statistische Untersuchungen der Spongiosa von Lenden- und Halswirbclkörpern. Orthopäde (im Druck)Google Scholar
  45. Pliess G (1969) Die reaktive Plastizität des Knochens. Dtsch Zahnärztl Z 24:99Google Scholar
  46. Rizzi M (1976) Biomechanics of the spine. Manuelle Medizin. Fischer, HeidelbergGoogle Scholar
  47. Sager P (1969) Spondylosis cervicalis. Diss, KopenhagenGoogle Scholar
  48. Schenk R, Merz W (1969) Histologisch-morphometrische Untersuchungen über Altersatrophie und senile Osteoporose in der Spongiosa des Beckenkammes. Dtsch Med Wochenschr 94:206Google Scholar
  49. Schenk RK, Merz WA, Müller J (1969) A quantitative histological study on bone resorption in human cancellous bone. Acta Anat 74:44Google Scholar
  50. Schlüter K (1965) Form und Struktur des normalen und pathologisch veränderten Wirbels. Die Wirbelsäule in Forschung and Praxis, Bd 30. Hippokrates, StuttgartGoogle Scholar
  51. Schmorl G, Junghanns (1968) Die gesunde und kranke Wirbelsäule in Röntgenbild und Klinik. Thieme, StuttgartGoogle Scholar
  52. Serra I (1973) Theoretische Grundlagen des Leitz-TexturAnalyse-Systems. Leitz-Mitt Wiss Tech [Suppl I] 4:125Google Scholar
  53. Sigwart H (1974) Werkstoffkunde. Dubbel. In: Sass F, Bouche C, Leitner A (eds) Taschenbuch für den Maschinenbau. Springer, Berlin Heidelberg New YorkGoogle Scholar
  54. Stahl C (1977) Untersuchungen zur Mobilität der cervikalen Bandscheiben sowie Studien über die Anatomie des cervikalen und lumbalen Bewegungssegmentes. Diss, Düssel-dorfGoogle Scholar
  55. Stahl C, Huth (1980) Morphologischer Nachweis synovialer Spalträume in der Uncovertebralregion cervicaler Bandscheiben. Z Orthop 118:721Google Scholar
  56. Tanaka Y (1974) A radiographic analysis on human lumbar vertebrae in the aged. Virchows Arch A Pathol Anat Histol 366:351Google Scholar
  57. Tittel K (1974) Beschreibende und funktionelle Anatomic des Menschen. Fischer, StuttgartGoogle Scholar
  58. Töndury G (1974) Morphology of the cervical spine. In: Jung A, Kehr P, Magerl F, Weber BG (eds) The cervical spine. Huber, BernGoogle Scholar
  59. White A, Panjabi (1978) Clinical biomechanics of the spine. Lippincott, PhiladelphiaGoogle Scholar
  60. Wörsdorfer O, Magerl F (1980) Funktionelle Anatomie der Wirbelsäule. Hefte Unfallheilkd 149:1Google Scholar
  61. Wood PM (1979) Applied anatomy and physiology of the vertebral column. Physiotherapy 65:248Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • H. -J. Pesch
    • 1
  • W. Bischoff
    • 1
  • Th. Becker
    • 1
  • H. Seibold
    • 2
  1. 1.Pathologisches InstitutErlangenGermany
  2. 2.Institut für Medizinische Statistik und Dokumentation der Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations