Skip to main content
Log in

Heterologous gene expression of the glyphosate resistance marker and its application in yeast transformation

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The E. coli aroA gene was inserted between yeast promoter and terminator sequences in different shuttle expression plasmids and found to confer enhanced EPSP synthase activity as well as resistance to glyphosate toxicity. Subsequently, a transformation system using these newly constructed vectors in yeast was characterized. The efficiency of the glyphosate resistance marker for transformation and selection with plasmid pHR6/20-1 in S. cerevisiae laboratory strain SHY2 was found to be relatively high when compared with selection for LEU2 prototrophy. The fate of the recombinant plasmid pHR6/20-1 in the transformants, the preservation of the aroA E. coli DNA fragment in yeast, mitotic stability, EPSP synthase activity, and growth on glyphosate-containing medium have been investigated. As this plasmid also allows direct selection for glyphosate resistant transformants on rich media, the glyphosate resistance marker was used for transforming both S. cerevisiae laboratory strain SHY2 and brewer's yeast strains S. cerevisiae var. “uvarum” BHS5 and BHS2. In all cases, the vector pHR6/20-1 was maintained as an autonomously replicating plasmid. The resistance marker is, therefore, suitable for transforming genetically unlabeled S. cerevisiae laboratory, wild, and industrial yeast strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EPSP :

5-enolpyruvylshikimate 3-phosphate

References

  • Ammerer G (1983) In: Wu e, Grossman L, Moldave K (eds) Methods in enzymology, vol 101c. Academic Press, New York London, pp 192–201

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bode R, Kunze G, Birnbaum D (1985) Biochem Physiol Pflanz 180:613–619

    Google Scholar 

  • Bode R, Schauer F, Birnbaum D (1986) Biochem Physiol Pflanz 181:39–46

    Google Scholar 

  • Boros I, Lucacsovich T, Baliko G, Venetianer P (1986) Gene 42:97–100

    Google Scholar 

  • Botstein D, Falco SC, Stewart SE, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8:17–24

    Google Scholar 

  • Case ME (1983) In: Lurquin PF, Leinhofs A (eds) Genetic engineering in eukaryotes. Plenum Press, New York, pp 1–5

    Google Scholar 

  • Duncan K, Coggins JR (1984) Biochem Soc Trans 12:274–275

    Google Scholar 

  • Duncan K, Coggins JR (1986) Biochem J 234:49–57

    Google Scholar 

  • Duncan K, Lewendon A, Coggins JR (1984) FEBS Lett 165:121–127

    Google Scholar 

  • Fogel S, Welch JW, Cathala G, Karin M (1983) Curr Genet 7:347–355

    Google Scholar 

  • Gatignol A, Baron M, Tiraby G (1987) Mol Gen Genet 207:342–348

    Google Scholar 

  • Gollub E, Zalkin H, Sprinson DB (1967) J Biol Chem 242:5323–5333

    Google Scholar 

  • Gritz L, Davis J (1983) Gene 25:179–188

    Google Scholar 

  • Hadfield C, Cashmore AM, Meacock PA (1987) Gene 52:59–70

    Google Scholar 

  • Hanahan D (1983) J Mol Biol 166:557–580

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hitzeman RA, Clarke L, Carbon J (1980) J Biol Chem 255:12073–12080

    Google Scholar 

  • Hollaender-Czytko H, Johanning D, Meyer HE, Amrhein N (1988) Plant Mol Biol 11:215–220

    Google Scholar 

  • Ito H, Fukada Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Jaworski EG (1972) J Agric Food Chem 20:1195–1198

    Google Scholar 

  • Jiminez A, Davis J (1980) Nature 287:869–871

    Google Scholar 

  • Kaster KR, Burgett SG, Ingolia TD (1984) Curr Genet 8:353–358

    Google Scholar 

  • Knowles PF, Sprinson DB (1970) In: Tabor H, Tabor GW (eds) Methods in enzymology, vol 17A. Academic Press, New York London, pp 351–352

    Google Scholar 

  • Kunze G, Hecker M, Birnbaum D (1984) Z Allg Mikrobiol 24:33–40

    Google Scholar 

  • Larimer FW, Morse CC, Beck AK, Cole KW, Gaertner FH (1983) Mol Cell Biol 3:1609–1614

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Mol Chem 193:265–275

    Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Zhu J, Contreras R, Gheysen D, Erst J, Fiers W (1985) Biotechnology 3:451–456

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunze, G., Bode, R., Rintala, H. et al. Heterologous gene expression of the glyphosate resistance marker and its application in yeast transformation. Curr Genet 15, 91–98 (1989). https://doi.org/10.1007/BF00435454

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00435454

Key words

Navigation