Advertisement

Current Genetics

, Volume 7, Issue 3, pp 225–233 | Cite as

Recombinational analysis of oxi2 mutants and preliminary analysis of their translation products in S. cerevisiae

  • H. Baranowska
  • B. Szcześniak
  • A. Ejchart
  • A. Kruszewskal
  • M. Claisse
Article

Summary

Genetic and biochemical studies were performed with mutants allocated to the mitochondrial oxi2 gene.

Recombinational analysis of 19 oxi2 mutants was performed using α and a mutant strains derived from the same genetic background. The frequencies of wild-type recombinants in oxi2 × oxi2 crosses varied from 0.002 to 17%. The map of oxi2 mutations constructed on the basis of these frequencies shows many internal inconsistencies. In the course of rho deletion mapping five classes of oxi2 mutations were distinguished. The results of deletion analysis are in agreement with those of recombinational mapping.

The analysis of mitochondrial translation products by SDS-polyacrylamide electrophoresis of 20 oxi2 mutants shows that 17 of them are connected with conspicuous changes of 22 kd polypeptide band corresponding to subunit III of cytochrome oxidase. At least four of them carried instead of subunit III clearly visible significantly shorter polypeptides (12.8 to 20.1 kd). These were, most likely, shorter fragments of subunit III resulting from chain termination mutations. Colinearity was observed between the lenght of new polypeptides and the positions of the respective mutations on the recombinational map. These data confirm hat oxi2 encodes subunit III of cytochrome oxidase and suggest that translation of the oxi2 gene is in the direction from V303 to V273.

Key words

Yeast Mitochondria Intragenic recombination Mutant polypeptides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biliński T, Litwiriska J, Śledziewski A, Rytka J (1980) Acta Microbiol Polon 29:199–212Google Scholar
  2. Borst P, Grivell LA (1978) Cell 15:705–726Google Scholar
  3. Carignani G, Dujardin G, Slonimski PP (1979) Mol Gen Genet 167:301–308Google Scholar
  4. Claisse ML, Spyridakis A, Slonimski PP (1977) In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977, Genetics and Biogenesis of Mitochondria. Walter de Gruyter, Berlin, pp 337–344Google Scholar
  5. Claisse ML, Slonimski PP, Johnson J, Mahler HR (1980) Mol Gen Genet 177:375–387Google Scholar
  6. Corruzzi G, Tzagoloff A (1979) J Biol Chem 254:9324–9330Google Scholar
  7. Dujardin G, Pajot P, Groudinsky O, Slonimski P (1980) Mol Gen Genet 179:469–482Google Scholar
  8. Fox TD (1979a) J Mol Biol 130:63–82Google Scholar
  9. Fox TD (1979b) Proc Natl Acad Sci USA 76:6534–6538Google Scholar
  10. Groudinsky O, Dujardin G, Slonimski PP (1981) Mol Gen Genet 184:493–503Google Scholar
  11. Kotylak Z, Slonimski PP (1976) In: Saccone C, Kroon AM (eds) The Genetic Function of Mitochondrial DNA. North Holland, Amsterdam, pp 143–154Google Scholar
  12. Kotylak Z, Slonimski PP (1977a) In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977, Genetics and Biogenesis of Mitochondria. Walter de Gruyter, Berlin, pp 83–93Google Scholar
  13. Kotylak Z, Slonimski PP (1977b) ibid.In:, pp 162–172Google Scholar
  14. Kruszewska A, SzczeSniak B (1980) Genet Res Camb 35:225–229Google Scholar
  15. Kruszewska A, Szcześniak B, Claisse M (1980) Curr Genet 2: 45–51Google Scholar
  16. Mason TL, Poyton RO, Wharton DC, Schatz G (1973) J Biol Chem 248:1346–1354Google Scholar
  17. Mahler HR, Hanson D, Miller D, Biliński T, Ellis DM, Alexander NJ, Perlman PS (1977) In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977, Genetics and Biogenesis of Mitochondria. Walter de Gruyter, Berlin, pp 345–370Google Scholar
  18. Misiewicz MH, Kotylak Z (1982) Acta Microbiol Polon 31:239–248Google Scholar
  19. Morimoto R, Rabinowitz M (1979) Mol Gen Genet 170:25–48Google Scholar
  20. Poyton RO, Schatz G (1975) J Biol Chem 250:752–761Google Scholar
  21. Rubin MS, Tzagoloff A (1973) J Biol Chem 248:4275–4279Google Scholar
  22. Slonimski PP, Pajot P, Jacq C, Foucher M, Perrodin G, Kochko A, Lamouroux A (1978) In: Bacila M, Horecker BL, Stoppani AOM (eds) Biochemistry and Genetics of Yeast. Academic Press, New York, pp 339–368Google Scholar
  23. Thalenfeld B, Tzagoloff A (1980) J Biol Chem 255:6173–6180Google Scholar
  24. Weiss-Brummer B, Guba R, Haid A, Schweyen RJ (1979) Curr Genet 1:75–83Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. Baranowska
    • 1
  • B. Szcześniak
    • 1
  • A. Ejchart
    • 1
  • A. Kruszewskal
    • 1
  • M. Claisse
    • 2
    • 3
  1. 1.Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
  2. 2.Centre de Génétique Moléculaire du C.N.R.S.Gif-sur-Yvette
  3. 3.Universite Pierre et Marie CurieParis VIFrance

Personalised recommendations