Current Genetics

, Volume 12, Issue 6, pp 457–463 | Cite as

Characterization of the gene urf13-T and an unidentified reading frame, ORF 25, in maize and tobacco mitochondria

  • S. E. Stamper
  • R. E. Dewey
  • M. M. Bland
  • C. S. LevingsIII
Original Articles

Summary

We have previously identified two large open reading frames, designated ORF13 and ORF25, in the Texas male-sterile cytoplasm (cms-T) of maize mitochondrial DNA (mtDNA). ORF13 is a single copy gene of chimeric origin that is uniquely transcribed and translated in the mitochondria of cms-T maize, where it produces a polypeptide of approximately 13,000 Mr. The ORF13 reading frame does not occur in the maize N, C or S cytoplasms or Nicotiana tabacum. ORF25 exists as a single copy and is transcribed in the four major maize cytoplasms (N, T, C and S) and N. tabacum. The predicted ORF25 polypeptide has a molecular weight of 24,374 in normal maize and 22,439 in tobacco. Several nucleotide and predicted amino acid changes have occurred in the ORF25 gene among the four maize cytoplasms and N. tabacum. Properties such as transcription and conservation of the sequence between two diverse species suggests that ORF25 encodes a functional plant mitochondrial gene. The ORF25 sequence of maize contains a chloroplast DNA insert homologous to a tRNA-Arg gene; this chloroplast DNA insert is absent in the tobacco ORF25 sequence. Comparison of the ORF25 and ORF13 sequences in restored and non-restored cms-T indicates no differences in their nucleotide sequences. Thus fertility restoration does not alter the primary sequences of ORF13 or ORF25.

Key words

Nucleotide sequence Male-sterile cytoplasms Chloroplast insert 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckett JB (1971) Crop Sci 11:724–726Google Scholar
  2. Bland MM, Matzinger DF, Levings CS III (1985) Theor Appl Genet 69:535–541Google Scholar
  3. Bland MM, Levings CS III, Matzinger DF (1986) Mol Gen Genet 204:8–16Google Scholar
  4. Braun CJ, Levings CS III (1985) Plant Physiol 79:571–577Google Scholar
  5. Dawson, AJ, Jones VP, Leaver CJ (1984) EMBO J 3:2107–2113Google Scholar
  6. Dewey RE, Levings CS III, Timothy DH (1986) Cell 44:439–449Google Scholar
  7. Dewey RE, Levings CS III, Timothy DH (1987) Proc Natl Acad Sci USA 84:5374–5378Google Scholar
  8. Fauron CM-R, Abbott AG, Brettell RIS, Gesteland RF (1987) Curr Genet 11:339–346Google Scholar
  9. Fox TD, Leaver CJ (1981) Cell 26:315–323Google Scholar
  10. Klar AJS, Strathern JN, Broach JR, Hicks JB (1981) Nature 289:239–244Google Scholar
  11. Maniatis T, Fritsch EF, Sambrook J (eds) (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  12. Pring DR, Levings CS III (1978) Genetics 89:121–136Google Scholar
  13. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  14. Schuster AM, Sisco PH, Levings CS III (1983) Two unique RNAs in cms-S and RU maize mitochondria. In: Goldberg RB (ed) Plant molecular biology. Liss, New York, pp 437–444Google Scholar
  15. Schuster W, Hiesel R, Isaac PG, Leaver CJ, Brennicke A (1986) Nucleic Acids Res 14:5943–5954Google Scholar
  16. Thomas PS (1980) Proc Natl Acad Sci USA 77:5201–5205Google Scholar
  17. Vieira J, Messing J (1982) Gene 19:259–268Google Scholar
  18. Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119Google Scholar
  19. Zieg J, Hilmen M, Simon M (1978) Cell 15:237–244Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • S. E. Stamper
    • 1
  • R. E. Dewey
    • 1
  • M. M. Bland
    • 1
  • C. S. LevingsIII
    • 1
  1. 1.Department of GeneticsNorth Carolina State UniversityRaleighUSA

Personalised recommendations