Advertisement

Current Genetics

, Volume 12, Issue 2, pp 99–104 | Cite as

Terminal segment of Kluyveromyces lactis linear DNA plasmid pGKL2 supports autonomou sreplication of hybrid plasmids in Saccharomyces cerevisiae

  • Hiro-aki Fujimura
  • Fumio Hishinuma
  • Norio Gunge
Original Articles

Summary

By use of linear DNA plasmid pGKL2 from the yeast Kluyveromyces lactis we have constructed hybrid plasmids carrying a LEU2 gene of Saccharomyces cerevisiae as a selectable marker. The replication properties of hybrid plasmids in yeasts were investigated. We demonstrated that the insertion of a LEU2 gene into pGKL2 resulted in circularization of the hybrid plasmids and pGKL2 segment supported autonomous replication of the plasmids. Moreover, the hybrid plasmids propagated autonomously, independently of the presence of the natural pGKL2 plasmid.

Key words

ARS Linear DNA killer plasmid Replication Saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broach JR, Li Y-Y, Feldman J, Yayaram M, Abraham J, Nasmyth KA, Hicks JB (1982) Cold Spring Harbor Symp Quant Biol 47:1165–1173Google Scholar
  2. Clarke L, Carbon J (1980) Nature 287:504–509Google Scholar
  3. Davis RW, Botstein D, Both JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  4. Froman BE, Tait RC, Rodriguez RL (1984) Gene 31:257–261Google Scholar
  5. Gunge N, Sakaguchi K (1981) J Bacteriol 147:155–160Google Scholar
  6. Gunge N, Yamane C (1984) J Bacteriol 159:533–539Google Scholar
  7. Gunge N, Tamaru A, Ozawa F, Sakaguchi K (1981) J Bacteriol 145:382–390Google Scholar
  8. Gunge N, Murata K, Sakaguchi K (1982) J Bacteriol 151:462–464Google Scholar
  9. Hay RT, Stow ND, McDougall IM (1984) J Mol Biol 175:493–510Google Scholar
  10. Hinnen JB, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  11. Hishinuma F, Nakamura K, Hirai K, Nishizawa R, Gunge N, Maeda T (1984) Nucleic Acids Res 12:7581–7597Google Scholar
  12. Hsiao C, Carbon J (1979) Proc Natl Acad Sci USA 76:3829–3833Google Scholar
  13. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  14. Kikuchi Y, Hirai K, Hishinuma F (1984) Nucleic Acids Res 12:5685–5692Google Scholar
  15. de Louvencourt L, Fukuhara H, Heslot H, Wesolowski M (1983) J Bacteriol 154:737–742Google Scholar
  16. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  17. Niwa O, Sakaguchi K, Gunge N (1981) J Bacteriol 148:988–990Google Scholar
  18. Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  19. Sherman F, Fink GR, Hicks JB (1983) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  20. Stinchcomb D, Struhl K, Davis RW (1979) Nature 282:39–43Google Scholar
  21. Sreekrishna K, Webster TD, Dickson RC (1984) Gene 28:73–81Google Scholar
  22. Wesolowski M, Algeri A, Fukuhara H (1982a) Curr Genet 5:205–208Google Scholar
  23. Wesolowski M, Alferi A, Goffrini P, Fukuhara H (1982b) Curr Genet 5:191–197Google Scholar
  24. Wesolowski M, Dumazert P, Fukuhara H (1982c) Curr Genet 5:199–203Google Scholar
  25. Zakian VA, Scott JF (1982) Mol Cell Biol 2:221–232Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Hiro-aki Fujimura
    • 1
  • Fumio Hishinuma
    • 1
  • Norio Gunge
    • 1
  1. 1.Mitsubishi Kasei Institute of Life SciencesMinamiooya, Machidashi, TokyoJapan

Personalised recommendations