Advertisement

Current Genetics

, Volume 14, Issue 6, pp 591–598 | Cite as

Physical mapping of the plastid genome from the chlorophyll c-containing alga, Cryptomonas Φ

  • Susan E. Douglas
Original Articles

Summary

A physical map of the circular plastid genome of Cryptomonas Φ has been constructed using the enzymes SacI, BamHI, SmaI, SalI, PstI and XhoI. In addition, fine-structural mapping of the inverted repeat region has been performed using AvaI, BglII, EcoRI and XbaI. The inverted repeat is very small, encompassing no more than 6 kb and containing only genes for the rRNAs. It divides the plastid genome into a small singlecopy region of 12–13 kb which contains genes for phycoerythrin and the 32 kd photosystem II polypeptide, and a large single-copy region of 93–94 kb, giving a total size of 118 kb. The genes for the large subunit of ribulose-1,5-bisphosphate carboxylase (Rubisco) and the beta subunit of ATP synthase CF1 are encoded in the large single-copy region. The evolutionary significance of the organization of this plastid genome, the first presented from the chlorophyll c-, phycobiliprotein-containing group of algae, is discussed.

Key words

Plastid genome evolution Algae Cryptomonad Inverted repeat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anet R, Strayer DR (1969) Biochem Biophys Res Commun 34: 328–334Google Scholar
  2. Bouché JP (1981) Anal Biochem 115:42–45Google Scholar
  3. Cattolico RA (1985) BioSystems 18:299–306Google Scholar
  4. Cattolico RA (1986) Trends Ecol Evol 1:64–67Google Scholar
  5. Cavalier-Smith TS (1986) Prog Phycol Res 4:309–347Google Scholar
  6. Curtis SE, Haselkorn R (1983) Proc Natl Acad Sci USA 80: 1835–1839Google Scholar
  7. Dalmon J, Loiseaux S, Bazetoux S (1983) Plant Sci Lett 29: 243–253Google Scholar
  8. Douglas SE, Doolittle WF (1984) Nucleic Acids Res 12:3373–3386Google Scholar
  9. Erikson JM, Rahire M, Rochaix JD (1984) EMBO J 3:2753–2762Google Scholar
  10. Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13Google Scholar
  11. Garger SJ, Griffith OM, Grill LK (1983) Biochem Biophys Res Commun 117:835–842Google Scholar
  12. Gibbs SP (1962) J Cell Biol 14:433–444Google Scholar
  13. Gibbs SP (1983) In: Schwemmler W, Schenk HEA (eds) Endocytobiology. de Gruyter, Berlin New York, pp 987–992Google Scholar
  14. Gillott MA, Gibbs SP (1980) J Phycol 16:558–568Google Scholar
  15. Graf L, Kösse1 H, Stutz E (1980) Nature 286:908–910Google Scholar
  16. Greenwood AD, Griffiths HB, Santore UJ (1977) Br Phycol J 12:119Google Scholar
  17. Johanningmeier U, Hallick RB (1987) Curr Genet 12:465–470Google Scholar
  18. Koller B, Delius H (1980) Mol Gen Genet 178:261–269Google Scholar
  19. Koller B, Gingrich JC, Stiegler GL, Farley MA, Delius H, Hallick RB (1984) Cell 36:545–553Google Scholar
  20. Kuhsel M, Kowallik KV (1985) Plant Mol Biol 4:365–376Google Scholar
  21. Kuhsel M, Kowallik KV (1987) Mol Gen Genet 207:361–368Google Scholar
  22. Lemieux C, Turmel M, Lee RW, Bellemare GA (1985a) Plant Mol Biol 5:77–84Google Scholar
  23. Lemieux C, Turmel M, Seligy VL, Lee RW (1985b) Curr Genet 9:139–145Google Scholar
  24. Li N, Cattolico RA (1987) Mol Gen Genet 209:343–351Google Scholar
  25. Linne von Berg KH, Schmidt M, Linne von Berg G, Sturm K, Henning A, Kowallik KV (1982) Br Phycol J 17:235Google Scholar
  26. Ludwig M, Gibbs SP (1985) Protoplasma 127:9–20Google Scholar
  27. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  28. Manuelidis L (1977) Anal Biochem 78:561–568Google Scholar
  29. Markowicz Y, Mache R, Loiseaux-De Göer S (1988) Plant Mol Biol 10:465–469Google Scholar
  30. McKerracher L, Gibbs SP (1982) Can J Bot 60:2440–2452Google Scholar
  31. McLachlan J (1973) Culture methods and growth measurements. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Cambridge, pp 21–51Google Scholar
  32. Montes G, Bradbeer JW (1976) Plant Sci Lett 6:35–41Google Scholar
  33. Morrall S, Greenwood AD (1982) J Cell Sci 54:311–328Google Scholar
  34. Nierzwicki-Bauer SA, Curtis SE, Haselkorn R (1984) Proc Natl Sci USA 81:5961–5965Google Scholar
  35. Owen RJ, Borman P (1987) Nucleic Acids Res 15:3631Google Scholar
  36. Palmer JD (1985) Molecular evolutionary genetics. In: MacIntyre RJ (ed) Monography in evolutionary biology. Plenum Press, New York, pp 131–240Google Scholar
  37. Palmer JD, Edwards H, Jorgensen RA, Thompson WF (1982) Nucleic Acids Res 10:6819–6832Google Scholar
  38. Palmer JD, Thompson WF (1981) Proc Natl Acad Sci USA 78:5533–5537Google Scholar
  39. Rawson JRY, Kuhsner SR, Vapnek D, Kirby N, Boerma A, Boerma CL (1978) Gene 3:191–209Google Scholar
  40. Reith M, Cattolico RA (1986) Proc Natl Acad Sci USA 83: 8599–8603Google Scholar
  41. Rigaud G, Grange T, Pictet R (1987) Nucleic Acids Res 15:857Google Scholar
  42. Schneider M, Rochaix JD (1986) Plant Mol Biol 6:265–270Google Scholar
  43. Sekar V (1987) Biotechniques 5:11–13Google Scholar
  44. Steinmuller K, Kaling M, Zetsche K (1983) Planta 159:308–313Google Scholar
  45. Szeto WW, Jones JDG, Zimmerman JL, McIntosh L, Ausubel FM (1981) Plant Mol Biol Newslett 2:97–99Google Scholar
  46. Viera J, Messing J (1982) Gene 19:259–268Google Scholar
  47. Whatley JM, John P, Whatley FR (1979) Proc R Soc London, Ser B204:165–187Google Scholar
  48. Whatley JM, Whatley FR (1981) New Phytol 87:233–247Google Scholar
  49. Whatley JM (1983) Int Rev Cytol [Suppl] 14:329–374Google Scholar
  50. Yamada T (1983) Curr Genet 7:481–487Google Scholar
  51. Yamada T, Shimaji M (1986) Nucleic Acids Res 14:3827–3839Google Scholar
  52. Zurawski G, Bottomley W, Whitfeld PR (1982) Proc Natl Acad Sci USA 79:6260–6264Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Susan E. Douglas
    • 1
  1. 1.Atlantic Research LaboratoryNational Research CouncilHalifaxCanada

Personalised recommendations