Current Genetics

, Volume 14, Issue 6, pp 567–572 | Cite as

Diploid construction by protoplast fusion in Fulvia fulva (syn. Cladosporium fulvum): genetic analysis of an imperfect fungal plant pathogen

  • N. J. Talbot
  • A. Coddington
  • I. N. Roberts
  • R. P. Oliver
Original Articles


Auxotrophic and drug resistant mutants have been isolated in five of the seven races of Fulvia fulva (syn. Cladosporium fulvum) following UV mutagenesis. Drug resistant mutants have also been isolated by genetic transformation using vectors conferring resistance to hygromycin B and phleomycin. Protoplasts of complementing auxotrophs or mutants with different drug resistances have been fused to form diploids as demonstrated by growth characteristics and microfluorimetry. Some of the diploid fusion products remained stable but most went on to haploidise spontaneously. Using this technique it is now possible to perform both complementation and linkage analysis in an imperfect fungal plant pathogen.

Key words

Fulvia fulva Tomato leaf mould Protoplast fusion Complementation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anne J, Péberdy JF (1976) J Gen Microbiol 92:413–417Google Scholar
  2. Barr R, Tomes HL (1961) Am J Bot 48:512–515Google Scholar
  3. Coddington A (1976) Mol Gen Genet 145:195–206Google Scholar
  4. Cove DJ (1976) Heredity 36:192–203Google Scholar
  5. Cove DJ (1979) Biol Rev 54:291–327Google Scholar
  6. De Wit PJGM, Hofman JE, Velthuis GCM, Kuc JA (1985) Plant Physiol 77:642–647Google Scholar
  7. De Wit PJGM, Buurlage M, Hammond KE (1986) Physiol Mol Plant Pathol 29:159–172Google Scholar
  8. Day PR (1957) Nature 179:1141–1142Google Scholar
  9. Fincham JRS, Day PR, Radford A (1979) Fungal genetics, 4th edn. Blackwell, London OxfordGoogle Scholar
  10. Fincham JRS (1988) Nature 331:207–208Google Scholar
  11. Garber RC, Fry WE, Yoder OC (1983) Ecology 64:1653–1655Google Scholar
  12. Harling R, Kenyon L, Lewis BG, Oliver RP, Turner JG, Coddington A (1988) J Phytopathol 122:143–146Google Scholar
  13. Hastie AC (1973) Trans Brit Mycol Soc 60:511–523Google Scholar
  14. Higgins VJ, de Wit PJGM (1985) Phytopathology 75:695–699Google Scholar
  15. Holliday R (1956) Nature 178:987–989Google Scholar
  16. Langin T, Faugeron G, Goyon C, Nicolas A, Rossignol JL (1986) Gene 49:283–293Google Scholar
  17. Miao V, Higgins VJ (1986) Can J Bot 64:1299–1305Google Scholar
  18. Mattern I, Pouwels PH and Van den Hondel CAMJJ (1987) Mol Gen Genet 210:460–462Google Scholar
  19. Mitchell RE (1976) Phytochemistry 15:1941–1947Google Scholar
  20. Oliver RP, Roberts IN, Harling R, Kenyon L, Punt PJ, Dingemanse MA, Van den Hondel CAMJJ (1987) Curr Genet 12:231–233Google Scholar
  21. Peberdy JF (1987) Microbiol Sci 4:108–114Google Scholar
  22. Pontecorvo G, Käfer E (1958) Adv Genet 9:71–145Google Scholar
  23. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  24. Talbot NJ, Rawlins D, Coddington A (1988) Curr Genet 14: 51–52Google Scholar
  25. Yoder OC, Valent B, Chumley F (1986) Phytopathology 76: 383–385Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • N. J. Talbot
    • 1
  • A. Coddington
    • 1
  • I. N. Roberts
    • 1
  • R. P. Oliver
    • 1
  1. 1.Norwich Molecular Plant Pathology Group, School of Biological SciencesUniversity of East AngliaNorwichUK

Personalised recommendations