Skip to main content
Log in

The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Allosuppressor (sal) mutations enhance the efficiency of the yeast ochre suppressor SUQ5 and define five unlinked loci, SALT-SALS. A number of sal4 mutants were isolated and found to have pleiotropic, allele;specific phenotypes, including hypersensitivity in vivo to paromomycin and other antibiotics that stimulate translational errors in yeast. To examine further the nature of the SAL4 gene product, the wild type SAL4 gene was isolated by complementation of a conditional lethal allele sal4-2, and demonstrated to be a single copy gene encoding a single 1.6 kb transcript. Restriction mapping and DNA hybridisation analysis were used to demonstrate that the SAL4 gene is identical to the previously identified omnipotent suppressor gene SUP45 (SUPT). Our results implicate the SAL4 gene product as playing a major role in maintaining translational accuracy in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breining P, Piepbersberg W (1986) Nucleic Acids Res 14:5187–5197

    Google Scholar 

  • Buckingham RH, Grosjean H (1986) In: Kirkwood TL, Rosenberger RF, Galas DJ (eds) Accuracy in molecular processes. Chapman and Hall, London, pp 83–126

    Google Scholar 

  • Burke JF, Mogg AE (1985) Nucleic Acids Res 13:6265–6272

    Google Scholar 

  • Caskey CT (1980) Trends Biochem Sci 5:234–237

    Google Scholar 

  • Cox BS (1965) Heredity 20:505–521

    Google Scholar 

  • Cox BS (1977) Genet Res 30:187–205

    Google Scholar 

  • Cox BS, Tuite MF, Mundy CR (1980) Genetics 95:589–609

    Google Scholar 

  • Craigen WJ, Cook RG, Tate WP, Caskey CT (1985) Proc Natl Acad Sci USA 82:3616–3620

    Google Scholar 

  • Crouzet M, Tuite MF (1987) Mol Gen Genet 210:581–583

    Google Scholar 

  • Cryer DR, Eccleshall R, Marmur J (1975) Methods Cell Biol 12:39–44

    Google Scholar 

  • Dequard-Chablat M, Coppin-Raynal E, Picard-Bennoun M, Madjar JJ (1986) J Mol Biol 190:167–175

    Google Scholar 

  • Eustice DC, Wakem LP, Wilhelm JM, Sherman F (1986) J Mol Biol 188:207–214

    Google Scholar 

  • Gorini L (1974) In: Nomura M, Tissieres A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 791–804

    Google Scholar 

  • Harley CB, Pollard JW, Stanners CP, Goldstein S (1981) J Biol Chem 256:10786–10794

    Google Scholar 

  • Himmelfarb HJ, Maicas E, Friesen JD (1985) Mol Cell Biol 5: 816–822

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Holmes DS, Quigley M (1981) Anal Biochem 114:193–197

    Google Scholar 

  • Kushnirov VV, Ter-Avanesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG (1988) Gene 66: 45–54

    Google Scholar 

  • Liebman SW, Cavenagh M (1980) Genetics 95:49–61

    Google Scholar 

  • Loftield RB, Vanderjagt D (1972) Biochem J 128:1353–1356

    Google Scholar 

  • Lorincz A (1984) Focus 6:11

    Google Scholar 

  • Mandel M, Higa A (1970) J Mol Biol 53:154–162

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Masurekar N, Palmer E, Ono B-I, Wilhelm JM, Sherman F (1981) J Mol Biol 147:381–390

    Google Scholar 

  • McIntosh M, Haynes RH (1986) Mol Cell Biol 6:1711–1721

    Google Scholar 

  • McMaster GK, Carmichael G (1977) Proc Natl Acad Sci USA 74:4835–4838

    Google Scholar 

  • Palmer E, Wilhelm JM, Sherman F (1979) Nature 277:146–148

    Google Scholar 

  • Piepersberg W, Geyl D, Hummel H, Bock A (1980) In: Osawa S, Ozeki H, Uchida H, Hura T (eds) Genetics and evolution of transcriptional and translational apparatus. Kodansha Scientific, Tokyo, pp 359–377

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Singh A, Ursic D, Davies J (1979) Nature 277:148–150

    Google Scholar 

  • Song JM, Liebman SW (1987) Genetics 115:451–460

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Spalding A, Tuite MIT (1989) J Gen Microbiol (in press)

  • Surgochov AP, Smirnov VN, Ter-Avanesyan MD, Inge-Vechtomov SG (1984) Physicochem Biol Rev 4:147–205

    Google Scholar 

  • Tapio S, Kurland CG (1986) Mol Gen Genet 205:186–188

    Google Scholar 

  • Thomas P (1980) Proc Natl Acad Sci USA 77:5201–5205

    Google Scholar 

  • Thompson RC, Dix DB, Karim AM (1986) J Biol Chem 261: 4868–4874

    Google Scholar 

  • Tuite MF, McLaughlin CS (1984) Biochim Biophys Acta 783: 166–170

    Google Scholar 

  • Vijgenboom E, Vink T, Kraal B, Bosch L (1985) EMBO J 4: 1049–1052

    Google Scholar 

  • Weiss RB, Murphy JP, Gallant JA (1984) J Bacteriol 158:362–364

    Google Scholar 

  • Wilson PG, Culbertson MR (1988) J Mol Biol 199:559–573

    Google Scholar 

  • Young CSH, Cox BS (1971) Heredity 26:413–422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crouzet, M., Izgu, F., Grant, C.M. et al. The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiae . Curr Genet 14, 537–543 (1988). https://doi.org/10.1007/BF00434078

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00434078

Key words

Navigation