Skip to main content
Log in

Plastome mutation affecting the chloroplast ATP synthase involves a post-transcriptional defect

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

In a plastid genome (plastome) mutation of Oenothera hookeri, at least two of the plastome-coded polypeptides (the β and ε subunits) of the chloroplast ATP synthase are directly affected. As in other plastid chromosomes, the genes for the β and ε subunits are located next to each other on the Oenothera ptDNA molecule and are cotranscribed. Immunoanalysis and peptide mapping of in vivo products suggests that a fusion of the two genes may have occurred in the plastome mutant. In contrast to the in vivo data, in vitro translation of the RNA using a heterologous system results in polypeptides which cannot be distinguished from those of wild-type. In addition, neither the mRNA sizes nor plastid DNA restriction fragment patterns differ from wild-type. To reconcile the paradox of these results, it is suggested that either a defect in a translational signal or some other post-transcriptional event is responsible for the mutant phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt J, Winter P, Sebald W, Moser JG, Schedel R, Westhoff P, Herrmann RG (1983) Curr Genet 7:129–138

    Google Scholar 

  • Baltimore P (1966) J Mol Biol 18:421–428

    Google Scholar 

  • Bünemann H (1982) Nucleic Acids Res 10:7181–7196

    Google Scholar 

  • Bünemann H, Westhoff P, Herrmann RG (1982) Nucleic Acids Res 10:7163–7180

    Google Scholar 

  • Cleveland DW, Fischer SW, Kirschner MW, Laemmli UK (1977) J Biol Chem 252:1102–1106

    Google Scholar 

  • Doherty A, Gray JC (1980) Eur J Biochem 108:131–136

    Google Scholar 

  • Ellis RJ (1977) Biochim Biophys Acta 463:185–215

    Google Scholar 

  • Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1981) Theor Appl Genet 59:281–296

    Google Scholar 

  • Herrmann RG, Seyer P, Schedel R, Gordon K, Bisanz C, Winter P, Hildebrandt JW, Wlaschek M, Alt J, Driesel AJ, Sears BB (1980) In: Bücher Th, Sebald W, Weiss H (eds) Biological chemistry of organelle formation. Springer, Berlin Heidelberg New York Tokyo, pp 97–112

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Winter P, Tittgen J, Bisanz C, Sears BB, Nelson N, Hurt E, Hauska G, Viebrock A, Sebald W (1983) In: Ciferri O, Dure L (eds) Structure and function of plant genomes. Plenum Press, New York, pp 143–153

    Google Scholar 

  • Howe CJ, Bowman CM, Dyer TA, Gray JC (1982) Mol Gen Genet 186:525–530

    Google Scholar 

  • Hulla FW, Hockel M, Rack M, Risi S, Dose K (1978) Biochem 17:823–828

    Google Scholar 

  • Krebbers ET, Larrinua IM, McIntosh L, Bogorad L (1982) Nucleic Acids Res 10:4985–5001

    Google Scholar 

  • McMaster GK, Carmichael CG (1977) Proc Natl Acad Sci USA 74:4835–4838

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambroc J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Moroney JV, Lopresti L, McEwen BF, McCarty RE, Hammes GG (1983) FEBS Letters 158:58–62

    Google Scholar 

  • Mendiola-Morgenthaler LR, Morgenthaler JJ, Price CA (1976) FEBS Letters 62:96–99

    Google Scholar 

  • Merchant S, Shaner SL, Selman BR (1983) J Biol Chem 258:1026–1031

    Google Scholar 

  • Nagata T, Takebe I (1971) Planta 99:12–20

    Google Scholar 

  • Nelson N, Nelson H, Schatz G (1980) Proc Natl Acad Sci USA 77:1361–1364

    Google Scholar 

  • Rigby PW, Dieckmann M, Rhodes C (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Rott R, Nelson N (1981) J Biol Chem 256:9224–9228

    Google Scholar 

  • Sears BB, Herrmann RG (1983) J Cell Biochem 713:1318

    Google Scholar 

  • Stubbe W, Herrmann RG (1982) In: Edelman M, Hallick R, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam, pp 119–127

    Google Scholar 

  • Thomas P (1980) Proc Natl Acad Sci USA 77:5101–5205

    Google Scholar 

  • Towbin H, Staehelin Th, Gordon J (1979) Proc Natl Acad Sci USA 76:4350–4354

    Google Scholar 

  • Wagenvoord R, Van der Kraan I, Kemp A (1977) Biochim Biophys Acta 460:17–24

    Google Scholar 

  • Westhoff P, Nelson N, Bunemann H, Herrmann RG (1981) Curt Genet 4:109–120

    Google Scholar 

  • Westhoff P, Zetsche K (1981) Eur J Biochem 116:261–267

    Google Scholar 

  • Whitfeld PR, Zurawski G, Bottomley W (1983) In: Cifferi O, Dure L III (eds) The structure and function of plant genomes. Plenum Press, New York, pp 193–198

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1982) Proc Natl Acad Sci USA 79:7699–7703

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sears, B.B., Herrmann, R.G. Plastome mutation affecting the chloroplast ATP synthase involves a post-transcriptional defect. Curr Genet 9, 521–528 (1985). https://doi.org/10.1007/BF00434057

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00434057

Key words

Navigation