Skip to main content
Log in

Tandem and inverted repeats of arginine genes in Escherichia coli

Structural and evolutionary considerations

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Duplications of arg genes produced in the Rec+ and in the recA genetic backgrounds are shown by heteroduplex analysis to be strictly tandem at the level of resolution of this technique. The formation of these particular rearrangements therefore does not require the inclusion of transposons or other sequences of an appreciable size in their final structure.

Duplications of short segments (about 2,000 nucleotides) appear unexpectedly stable when compared with duplications of longer segments (about 10,000 nucleotides).

One of the structures analyzed displays two inversely repeated argE genes rearranged into an artificial divergent operon. The bearing of this observation on the origin of bipolar operons, of “mirror-image” map symmetries and on the production of inverted repeats in general, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, A.: Mechanisms of reversion of the gal3 mutation of Escherichia coli. Mol. Gen. Genet. 136, 243–250 (1975)

    Google Scholar 

  • Ahmed, A.: The gal3 mutation of E. coli. In: DNA insertion elements, plasmids and episomes (A.I. Bukhari, J.A. Shapiro and S.L. Adhya, eds). New York: Cold Spring Harbour Laboratory 1977

    Google Scholar 

  • Anderson, R.P., Roth, J.: Tandem genetic duplications in phage and bacteria. Ann. Rev. Microbiol. 31, 473–506 (1977)

    Google Scholar 

  • Bachman, B.J., Low, B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K-12. Bacteriol. Rev. 40, 116–167 (1976)

    Google Scholar 

  • Beeftink, F., Cunin, R., Glansdorff, N.: Arginine gene duplication in recombination proficient and deficient strains of Escherichia coli K-12. Mol. Gen. Genet. 132, 241–253 (1974)

    Google Scholar 

  • Boyen, A., Charlier D., Crabeel, M., Cunin, R., Glansdorff, N.: Studies on the bipolar argECBH operon of Escherichia coli: effect of regulatory mutations and IS2 insertions in the control region. Mol. Gen. Genet. 161, 185–196 (1978)

    Google Scholar 

  • Bretscher, A.P., Baumberg, S.: Divergent transcription, of the argECBH cluster of Escherichia coli K-12. Mutations which alter the control of enzyme synthesis. J. Mol. Biol. 102, 205–220 (1976)

    Google Scholar 

  • Busse, A., Baldwin, R.: Tandem genetic duplication in a derivative of phage γ. In: The Bacteriophage lambda (A.P. Hershey, ed.), p 113, New York: Cold Spring Harbour Laboratory 1971

    Google Scholar 

  • Charlier, D., Crabeel, M., Cunin, R., Glansdorff, N.: Experiments on duplications and palindromes in Escherichia coli. Arch. Int. Physiol. Biochim. 86, in press (1978)

  • Charlier, D., Crabeel, M., Palchaudhuri, S., Cunin, R., Boyen, A., Glansdorff, N.: Heteroduplex analysis of regulatory mutations and of insertions (IS1, IS2, IS5) in the bipolar argECBH operon of Escherichia coli. Mol. Gen. Genet. 161, 175–184 (1978)

    Google Scholar 

  • Chow, L., Broker, T.R.: Adjacent bacterial insertion sequences IS2 and IS5 in bacteriophage Mu mutants and, an IS5 in a lambda dgal bacteriophage. J. Bacteriol. 133 1427–1436 (1978)

    Google Scholar 

  • Chow, L., Davidson, N., Berg, D.: Electron microscope study of the structure of γdv DNAs. J. Mol. Biol. 86, 69–89 (1974)

    Google Scholar 

  • Cunin, R., Elseviers, D., Glansdorff, N.: De novo gene duplication versus reactivation of cryptic genes in Escherichia coli K-12. Mol. Gen. Genet. 108, 154–157 (1970)

    Google Scholar 

  • Cunin, R., Glansdorff, N.: Messenger RNA from arginine and phosphoenolpyruvate carboxylase genes in argR+ and argR- strains of Escherichia coli K-12. FEBS Lett. 18, 135–137 (1971)

    Google Scholar 

  • Elseviers, D., Cunin, R., Glansdorff, N., Baumberg, S., Ashcroft, E.: Control regions within the argECBH gene cluster of Escherichia coli K-12. Mol. Gen. Genet. 117, 349–366 (1972)

    Google Scholar 

  • Faelen, M., Toussaint, A.: Mu-1: a tool to transpose and to localize bacterial genes. J. Mol. Biol. 104, 525–533 (1976)

    Google Scholar 

  • Faelen, M., Toussaint, A., De Lafonteyne, J.: Model for the enhancement of γ-gal integration into partially induced Mu-1 lysogens. J. Bacteriol. 121, 873–882 (1975)

    Google Scholar 

  • Farabaugh, P.J., Schmeissner, V., Hofer, M., Miller, J.H.: Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hot spots in the lacI gene of E. coli J. Mol. Biol. (in press)

  • Gigot, D., Caplier, I., Strosberg, A.D., Piérard, A., Glansdorff, N.: Amino-proximal sequences of the argF and argI ornithine carbamoyltransferases from Escherichia coli K-12. Arch. Int. Physiol. Biochim. 86, in press (1978)

  • Glansdorff, N.: Le contrôle génétique des biosynthèses de l'arginine et du carbamylphosphate chez Escherichia coli. Thèse, Université Libre de Bruxelles (1966)

  • Glansdorff, N., Sand, G.: Coordination of enzyme, synthesis in the arginine pathway of Escherichia coli K-12. Biochim. Biophys. Acta 108, 308–311 (1965)

    Google Scholar 

  • Hegeman, G.D., Rosenberg, S.L.: The evolution of bacterial enzyme systems. Annu. Rev. Microbiol. 24, 429–462 (1970)

    Google Scholar 

  • Hill, C., Combriato, P.: Genetic duplications induced at very high frequency by ultraviolet irradiation in Escherichia coli. Mol. Gen. Genet. 127, 197–214 (1973)

    Google Scholar 

  • Hill, C.W., Grafstrom, R.H., Hillman, B.S.: Chromosomal rearrangements resulting from recombination between ribosomal RNA genes In: DNA insertion elements, plasmids and episomes (A.I. Buhkari, J.A. Shapiro, and S.L. Adhyma, eds.) New York: Cold Spring Harbour Laboratory 1977

    Google Scholar 

  • Hopwood, D.: Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol. Rev. 31, 373–403 (1967)

    Google Scholar 

  • Inderlied, C.B., Mortlock, R.P.: Growth of Klebsiella aerogenes on xylitol: implications for bacterial enzyme evolution. J. Mol. Evol. 9, 181–190 (1977)

    Google Scholar 

  • Jacob, F.: Transduction of lysogeny in Escherichia coli. Virology. 1, 207–220 (1955)

    Google Scholar 

  • Jacoby, G.A.: Control of the argECBH cluster in Escherichia coli. Mol. Gen. Genet. 117, 337–348 (1972)

    Google Scholar 

  • Jensen, R.A.: Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976)

    Google Scholar 

  • Ketner, G., Campbell, A.: Operator and promotor mutations affecting divergent transcription in the bio gene cluster of Escherichia coli. J. Mol. Biol. 96, 13–27 (1975)

    Google Scholar 

  • Kikuchi, A., Gorini, L.: Similarity of genes argF and argI. Nature 156, 621–624 (1975)

    Google Scholar 

  • Koch, A.: Selection and recombinations in populations containing tandem multiplicate genes. Genetics (in press)

  • Legrain, C., Halleux, P., Stalon, V., Glansdorff, N.: The dual genetic control of ornithine carbamoyltransferase in Escherichia coli. A case of bacterial hybrid enzymes. Eur. J. Biochem. 27, 93–102 (1972)

    Google Scholar 

  • Legrain, C., Stalon, V., Glansdorff, N.: Escherichia coli ornithine carbamoyltransferase isoenzymes: evolutionary, significance and the isolation of γargF and γargI transducing bacteriophages. J. Bacteriol. 128, 35–38 (1976)

    Google Scholar 

  • Lewis, E.B.: Pseudoparallelism and gene evolution. Cold Spring Harbor. Symp. Quant. Biol. 16, 159–174 (1951)

    Google Scholar 

  • Mazaïtis, A.J., Palchaudhuri, S., Glansdorff, N.: Isolation and characterization of γdargECBH transducing phages and heteroduplex analysis of the argECBH, cluster. Mol. Gen. Genet. 143, 175–196 (1976)

    Google Scholar 

  • McFall, E., Maas, W.K.: Regulation of enzyme synthesis in microorganisms. In: Molecular genetics II (J.H. Taylor, ed.), p. 255 New York: Academic Press 1967

    Google Scholar 

  • Ohno, S.: Evolution by gene duplications. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  • Pilacinski, W., Morharaffa, E., Edmundson, R., Zissler, J., Fiandt, M., Szybalski, W.: Insertion sequences IS2 associated with intconstitutive mutants of bacteriophage γ. Gene 2, 61–74 (1977)

    Google Scholar 

  • Reif, H.J., Saedler, H.: 1S1 is involved in deletion formation in the gal region of E. coli K-12. Mol. Gen. Genet. 137, 17–23 (1975)

    Google Scholar 

  • Riley, H., Solomon, L., Zipkas, D.: Relationship between gene function and gene location in Escherichia coli. J. Mol. Evol. 11, 47–56 (1978)

    Google Scholar 

  • Saedler, H., Reif, H.J., Hsu, S., Davidson, N.: IS2, a genetic element for turn-off and turn-on of gene activity in E. coli. Mol. Gen. Genet. 132, 265–272 (1974)

    Google Scholar 

  • Scanpos, G.A., Reiner, A.M.: Ribitol and D-Arabitol catabolism in Escherichia coli. J. Bacteriol. 134, 492–500 (1978)

    Google Scholar 

  • Stacey, K.A., Simson, E.: Improved method for the isolation of thymine requiring mutants of Escherichia coli. J. Bacteriol. 90, 554–555 (1965)

    Google Scholar 

  • Starlinger, P.: DNA rearrangements in procaryotes. Annu. Rev. Genet. 11, 103–126 (1977)

    Google Scholar 

  • Trowsdale, J., Anagnostopoulos, C.: Evidence for the translocation of a chromosome segment in Bacillus subtilis strains carrying the trpE26 mutation. J. Bacteriol. 122, 886–898 (1975)

    Google Scholar 

  • Weisberg, R.A., Adhya S.: Illegitimate recombination in bacteria and bacteriophages. Annu. Rev. Genet. 11, 451–473 (1977)

    Google Scholar 

  • Zipkas, D., Riley, H.: Proposal concerning mechanism of evolution of the genome of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 72, 1354–1358 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G.O'Donovan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlier, D., Crabeel, M., Cunin, R. et al. Tandem and inverted repeats of arginine genes in Escherichia coli . Molec. Gen. Genet. 174, 75–88 (1979). https://doi.org/10.1007/BF00433308

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00433308

Keywords

Navigation