Skip to main content
Log in

Carbohydrate metabolism and transport in Bacillus subtilis

A study of ctr mutations

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Pleiotropic point mutations termed ctr, which affect carbon source utilization have been mapped on the B. subtilis chromosome by PBS1 mediated transduction, between the fru and metC markers.

The ctr mutants are unable to carry on the uptake of radioactive fructose, glucose (méthyl-α-D-glucopyranoside), mannose, mannitol and sucrose, which is related to the absence of an Enzyme I like component in the phosphoenolpyruvate phosphotransferase system.

The pleiotropic effect of the mutation includes the unability of the cells to grow on glycerol as carbon source, though glycerol transport is not mediated by the PEP phosphotransferase system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostopoulos, C., Spizizen, J.: Requirements for transformation in Bacillus subtilis. J. Bact. 81, 741–746 (1961)

    Google Scholar 

  • Berman, M., Lin, E. C. C.: Glycerol specific revertants of a phosphoenolpyruvate phosphotransferase mutant: suppression by the desensitization of glycerol kinase to feed back inhibition. J. Bact. 105, 113–120 (1971).

    Google Scholar 

  • Berman, M., Zwaig, N., Lin, E. C. C.: Suppression of a pleiotropic mutant affecting glycerol dissimilation. Biochem. biophys. Res. Commun. 38, 272–278 (1970).

    Google Scholar 

  • Berman-Kurtz, M., Lin, E. C. C., Richey, Y.: Promotor-like mutant with increased expression of the glycerol kinase operon of Escherichia coli. J. Bact. 106, 724–731 (1971).

    Google Scholar 

  • Dahl, R., Wang, R. J., Morse, M. L.: Effect of pleiotropic carbohydrate mutations (ctr) on tryptophan catabolism. J. Bact. 107, 513–518 (1971).

    Google Scholar 

  • Delobbe, A., Haguenauer, R., Rapoport, G.: Studies on the transport of α methyl-D-glucoside in Bacillus subtilis 168. Biochimie 53, 1015–1021 (1971).

    Google Scholar 

  • Demerec, M., Abelberg, E. A., Clark, A J., Hartman, P. E.: A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 61–76 (1966).

    Google Scholar 

  • Dubnau, D.: Linkage map of Bacillus subtilis, handbook of biochemistry, selected data for molecular biology, ed. by H. A. Sober, second edition, I39-I45. Cleveland Ohio: Chemical Rubber Co. 1970.

    Google Scholar 

  • Dubnau, D., Goldwaithe, C., Smith I., Marmur, J.: Genetic mapping in Bacillus subtilis. J. molec. Biol. 27, 163–185 (1967).

    Google Scholar 

  • Egan, J. B., Morse, M. L.: Carbohydrate transport in S. aureus I-Genetic and biochemical analysis of a transport mutation. Biochim. biophys. Acta. (Amst.) 97, 310–319 (1965).

    Google Scholar 

  • Fraenkel, D. G.: The phosphoenolpyruvate initiated pathway of fructose metabolism in Escherichia Coli J. biol. Chem. 243, 6458–6463, (1968).

    Google Scholar 

  • Freese, E., Klofat, W., Galliers, E.: Commitment to sporulation and induction of glucose-phosphoenolpyruvate transferase. Biochim. biophys. Acta (Amst.) 222, 265–289 (1970).

    Google Scholar 

  • Garro, A.J., Leffert, H., Marmur, J.: Genetic mapping of a defective bacteriophage on the chromosome of Bacillus subtilis 168. J. Virol. 6, 340–343 (1970).

    Google Scholar 

  • Gay, P.: Etude génétique et biochimique de métabolisme du fructose chez B. subtilis, Thèse de doctorat de troisième cycle, Université Paris VI, année 1971.

  • Gay, P., Carayon, A., Rapoport, G.: Isolement et localisation génétique de mutants du système métabolique du fructose chez B. subtilis. C. R. Acad. Sci. (Paris) 271, 263–266 (1970).

    Google Scholar 

  • Gay, P., Rapoport, G.: Etude des mutants dépourvus de fructose-1-phosphate kinase chez B. subtilis. C. R. Acad. Sci. (Paris) 271, 374–377 (1970).

    Google Scholar 

  • Horwitz, S. B., Kaplan, N. O.: Hexitol dehydrogenases of Bacillus subtilis. J. biol. Chem. 239, 830–838 (1964).

    Google Scholar 

  • Kaback, H. R.: Transport across isolated bacterial cytoplasmic membranes. Biochim. biophys. Acta (Amst.) MR1, 265, 367–416 (1972).

    Google Scholar 

  • Kundig, W., Ghosh, S., Roseman, S.: Phosphate bound to hisitdine protein as an intermediate in a novel phosphotransferase system. Proc. nat. Acad. Sci. (Wash.), 52, 1067–1074 (1964).

    Google Scholar 

  • Lepesant, J-A., Dedonder, R.: Transport du saccharose chez B. subtilis. C. R. Acad. Sci. (Paris) 267, 1109–1112 (1968).

    Google Scholar 

  • Lepesant, J-A., Kunst, F., Lepesant-Kejzlarovà, J., Dedonder R.: Chromosomal location of mutations affecting sucrose metabolism in B. subtilis Marburg. Molec. gen. Genet. 118, 135–160 (1972).

    Google Scholar 

  • Lin, E. C. C.: The genetics of bacterial transport systems. Ann. Rev. Genet 4, 225–257 (1970).

    Google Scholar 

  • Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. molec. Biol. 3, 208–218 (1961).

    Google Scholar 

  • Marquet, M., Wagner, M. C. Dedonder, R.: Separation of components of the phosphoenolpyruvate glucose phosphotransferase system in Bacillus subtilis Marburg. Biochimie, 53, 1131–1134 (1971).

    Google Scholar 

  • Marquet, M., Wagner, M. C., Delobbe, A., Gay, P., Rapoport, G.: Mise en évidence de systèmes de phosphotransférases dans le transport du glucose du fructose et du saccharose chez B. subtilis. C.R. Acad. Sci. (Paris) 271, 449–452 (1970).

    Google Scholar 

  • Pascal, M., Kunst, F., Lepesant, J. A., Dedonder, R.: Characterization of two sucrase activities in B. subtilis Marburg. Biochimie 53, 1059–1066 (1971).

    Google Scholar 

  • Roseman, S.: The transport of carbohydrate by a bacterial phosphotransferase system. J. gen. Physiol. 54, 138s-180s (1969).

    Google Scholar 

  • Saier, M. H., Simoni, R. D., Roseman, S.: The physiological behaviour of Enzyme I and heat stable protein mutant of bacterial phosphotransferase system. J. biol. Chem. 245, 5870–5873 (1970).

    Google Scholar 

  • Schaeffer, P., Ionesco, H., Ryter, A., Balassa, G.: La sporulation de Bacillus subtilis, étude génétique et physiologique in Mécanismes de régulation des activités cellulaires chez les microorganismes, 553–563. Paris: Ed. Centre National de la Recherche Scientifique 1965.

    Google Scholar 

  • Simoni, R. D., Levinthal, M., Kundig, F. D., Kundig, W., Anderson, B., Hartman, P. E., Roseman, S.: Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Proc. nat. Acad. Sci. (Wash.) 58, 1963–1970 (1967).

    Google Scholar 

  • Takahashi, I.: Transducing phages for B. subtilis. J. gen. Microbiol. 31, 211–217 (1963).

    Google Scholar 

  • Tanaka, S., Fraenkel, D. G., Lin, E. C. C.: The enzymatic lesion of strain MM-6 a pleiotropic carbohydrate negative mutant of E. coli. Biochem. biophys. Res. Commun. 27, 63–67 (1967).

    Google Scholar 

  • Tanaka, S., Lin, E. C. C.: Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenol-pyruvate phosphotransferase system. Proc. nat. Acad. Sci. (Wash.) 57, 913–919 (1967).

    Google Scholar 

  • Wang, R. J., Morse, M. L.: Carbohydrate accumulation and metabolism in E. coli. I-Description of pleiotropic mutants. J. molec. Biol. 32, 59–66 (1968).

    Google Scholar 

  • Young, F. E., Smith, C., Reilly, B. E.: Chromosomal location of genes regulating resistance to bacteriophages in B. subtilis. J. Bact. 98, 1087–1097 (1969).

    Google Scholar 

  • Zwaig, N., Lin, E. C. C.: a method for isolating mutants resistant to catabolite repression. Biochem. biophys. Res. Commun. 22, 414–418 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Starlinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gay, P., Cordier, P., Marquet, M. et al. Carbohydrate metabolism and transport in Bacillus subtilis . Molec. Gen. Genet. 121, 355–368 (1973). https://doi.org/10.1007/BF00433234

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00433234

Keywords

Navigation