Skip to main content
Log in

Induction of respiration deficient mutants in Saccharomyces cerevisiae by Berenil

II. Characteristics of the process

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Some characteristic details of mutagenesis by Berenil, a non-intercalating trypanocidal dye, that govern the change from wild type (ϱ+) to vegetative petite (ϱ) in Saccharomyces cerevisiae are presented and contrasted with the intercalating mutagens ethidium bromide and euflavine.

The extent and rate of mutagenesis by Berenil is affected by a variety of parameters controlling the cellular and mitochondrial phenotype: among them are exposure to 45°; competition with EB but not euflavine; a requirement for an energy source during and subsequent to exposure to the mutagen; exposure to caffeine; and the presence of genetic blocks in various steps of the mitochondrial repair system for uv-induced lesions. It is, however, insensitive to exposure to Antimycin A. Except for the first of these observations, qualitative differences have emerged between the responses induced by Berenil and the other mutagens, especially ethidium bromide.

Using these observations we have postulated a stepwise sequence of events that can account for the mutagenic action of Berenil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, N. E., MacQuillan, A. M.: Target analysis of mitochondrial genetic units in yeast. J. Bact. 97, 1142–1148 (1969).

    Google Scholar 

  • Borst, P.: Mitochondrial nucleic acids. Ann. Rev. Biochem. 41, 333–376 (1972).

    Google Scholar 

  • Ephrussi, B., Jakob, H., Grandchamp, S.: Etudes sur la suppressivité des mutants a deficiencies respiratoire de la levure. III. Etapes de la mutation grande en petite provoquée par le facteur suppressif. Genetics 54, 1–29 (1966).

    Google Scholar 

  • Harm, W.: Differential effects of acriflavin and caffeine on various ultraviolet-irradiated Escherichia coli strains and T1 phage. Mutation Res. 4, 93–110 (1967).

    Google Scholar 

  • Howard-Flanders, H.: DNA repair. Ann. Rev. Biochem. 37, 175–200 (1968).

    Google Scholar 

  • Keiding, J., Westergaard, O.: Induction of DNA polymerase activity in irradiated Tetrahymena cells. Exp. Cell Res. 64, 317–322 (1971).

    Google Scholar 

  • Krieger, N. K.: Effects of antimycin A on mutagenesis by ethidium bromide. Senior Thesis, Department of Chemistry, Indiana University (1972).

  • Lardy, H. A., Ferguson, S. M.: Oxidative phosphorylation in mitochondria. Ann. Rev. Biochem. 38, 991–1034 (1969).

    Google Scholar 

  • Mahler, H. R., Mackler, B., Slonimski, P. P., Grandchamp, S.: Biochemical correlates of respiratory deficiency. II. Antigenic properties of respiratory particle. Biochemistry 3, 677–682 (1964).

    Google Scholar 

  • Mahler, H. R., Perlman, P. S.: Effects of mutagenic treatment by ethidium bromide on cellular and mitochondrial phenotype. Arch. Biochem. Biophys. 148, 115–129 (1972a).

    Google Scholar 

  • Mahler, H. R., Perlman, P. S.: Mutagenesis by ethidium bromide and mitochondrial membrane. J. Supramol. Structure 1, 105–124 (1972b).

    Google Scholar 

  • Mayer, V. W.: Induction by UV-light of sectored and non-sectored petite mutants of Saccharomyces cerevisiae. Mutation Res. 9, 255–260 (1970).

    Google Scholar 

  • Moustacchi, E.: Evidence for nucleus independent steps in control of repair of mitochondria damage. I. UV-induction of the cytoplasmic “petite” mutation in uv-sensitive nuclear mutants of Saccharomyces cerevisiae. Molec. gen. Genet. 114, 50–58 (1971).

    Google Scholar 

  • Moustacchi, E., Enteric, S.: Differential “liquid holding recovery” for the lethal effect and cytoplasmic “petite” induction by uv light in Saccharomyces cerevisiae. Molec. gen. Genet. 109, 69–83 (1970).

    Google Scholar 

  • Nagai, S., Nagai, H.: The interactions between caffeine, guanosine and adenosine related to the induction of respiration-deficient yeast. Nature 45, 557 (1958).

    Google Scholar 

  • Nagai, S., Yanagashima, N., Nagai, H.: Advances in the study of the respiration-deficient mutation in yeast and other microorganisms. Bact. Rev. 25, 404–426 (1961).

    Google Scholar 

  • Negrotti, T., Wilkie, D.: Induction of respiratory deficiency in repression of the respiratory system in a mutant of Saccharomyces cerevisiae. Biochim. biophys. Acta (Amst.) 153, 341–349 (1968).

    Google Scholar 

  • Ogur, M., St. John, R., Nagai, S.: Tetrazolium overlay techniques for population studies of respiration deficiency in yeast. Science 125, 928–929 (1957).

    Google Scholar 

  • Paoletti, J., Couder, H., Guerineau, M.: A yeast mitochondrial deoxyribonuclease stimulated by ethidium bromide. Biochem. biophys. Res. Commun. 48, 950–958 (1972).

    Google Scholar 

  • Perlman, P. S.: The nature of mitochondrial gene products. Ph. Dissertation, Indiana University, 1971.

  • Perlman, P. S., Mahler, H. R.: Molecular consequence of ethidium bromide mutagenesis. Nature (Lond.) New Biol. 231, 12–16 (1971a).

    Google Scholar 

  • Perlman, P. S., Mahler, H. R.: A premutational state induced in yeast by ethidium bromide. Biochem. biophys. Res. Commun. 44, 261–267 (1971b).

    Google Scholar 

  • Setlow, R. B.: Steps in the repair of DNA in fact and fancy. Brookhaven Symp. in Biol. 20, 1–12 (1968).

    Google Scholar 

  • Shankel, D. M.: “Mutational synergism” of ultraviolet light and caffeine in Escherichia coli. J. Bact. 84, 410–415 (1962).

    Google Scholar 

  • Sideropoulos, A. S., Shankel, D. M.: Mechanism of caffeine enhancement of mutations induced by sublethal ultraviolet dosages. J. Bact. 96, 168–204 (1968).

    Google Scholar 

  • Slonimski, P. P.: Reported at the International Symposium on DNA of Eukaryotes, Port Cros, France, May 5–9, 1971, and private communication.

  • Waring, M.: Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs. Evidence for molecular models involving intercalation. J. molec. Biol. 54, 247–279 (1970).

    Google Scholar 

  • Westergaard, O., Lindberg, P.: An induced mitochondrial DNA polymerase for Tetrahymena. Europ. J. Biochem. 28, 422–431 (1972).

    Google Scholar 

  • Westergaard, O., Marker, K. A., Keiding, J.: Induction of a mitochondrial DNA polymerase in Tetrahymena. Nature (Lond.) 227, 709–710 (1970).

    Google Scholar 

  • Witkin, E. M.: Modification of mutagenesis initiated by ultraviolet light through post treatment of bacteria with basic dyes. J. cell comp. Physiol., Suppl. 1, 135–144 (1961).

    Google Scholar 

  • Witkin, E. M.: Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet-light. Brookhaven Symp. in Biol. 20, 17–53 (1968).

    Google Scholar 

  • Witkin, E. M., Farquharson, E. L.: Enhancement and diminution of ultraviolet-light initiated mutagenesis by post-treatment with caffeine in Escherichia coli in CIBA Foundation Symposium on Mutation as Cellular Process, ed. by Wolstenholme, E. W., and O'Connor, M., p. 37–49. London: Churchill Press 1969.

    Google Scholar 

  • Wolstenholme, E. N., O'Connor, M.: (editors) CIBA Foundation Symposium on Mutation as Cellular Process. London: Churchill Press 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ch. Auerbach

Publication No. 2122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlman, P.S., Mahler, H.R. Induction of respiration deficient mutants in Saccharomyces cerevisiae by Berenil. Molec. Gen. Genet. 121, 295–306 (1973). https://doi.org/10.1007/BF00433229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00433229

Keywords

Navigation