Skip to main content
Log in

Induction of respiration deficient mutants in Saccharomyces cerevisiae by Berenil

I. Berenil, a novel, non-intercalating mutagen

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Berenil [di-(4-amidinophenyl)-triazine-(N-1,3)-diaceturate], a potent trypanocide, is known to interact strongly with kinetoplast and circular DNAs in general, yet is incapable of intercalation. Intercalative binding has been thought to be required for cationic, aromatic dyes, such as ethidium bromide or euflavine, to be effective in inducing the conversion of wild type to cytoplasmic petite, (ϱ) cells, a mitochondrial mutation in Saccharomyces cerevisiae. However, as shown here, Berenil is an efficient mutagen, but its action appears to differ in several important details from that brought about by the two classes of intercalating dyes.

Virtually quantitative, rapid mutagenesis without lethality can be brought about by concentrations of Berenil as low as 6.25 μM on glucose grown cells. This is so even after starvation in buffer, but requires the presence of a carbon source. For cells previously grown on a respiratory carbon source the concentration of Berenil must be raised to concentrations ≧50 μM for effective mutagenesis. The mutagenic process, induced by Berenil, particularly in the absence of growth is characterized by the production of a large number of mixed clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, W., Vinograd, J.: The use of intercalative dyes in the study of closed circular DNA. Prog. in Molec. Subcell. Biol. 2, 181–215 (1971).

    Google Scholar 

  • Bernardi, G., Carnevali, F., Nicolaieff, A., Piperno, C., Tecce, G.: Separation and characterization of a satellite DNA from a yeast cytoplasmic “petite” mutant. J. molec. Biol. 37, 493–505 (1968).

    Google Scholar 

  • Bernardi, G., Faures, M., Piperno, G., Slonimski, P.: Mitochondrial DNAs from respiration sufficient and cytoplasmic respiratory-deficient mutant yeast. J. molec. Biol. 48, 23–42 (1970).

    Google Scholar 

  • Bolotin, M., Coen, D., Deutsch J., Dujon, B.,Netter, P., Petrochilo, E., Slonimski, P. P.: La recombinaison des mitochondries chez Saccharomyces cerevisiae. Bull. Inst. Pasteur 69, 215–239 (1971).

    Google Scholar 

  • Borst, P.: Mitochondrial nucleic acids. Ann. Rev. Biochem. 41, 333–376 (1972).

    Google Scholar 

  • Carnevali, F., Morpurgo, G., Tecce, G.: Cytoplasmic DNA from petite colonies of Saccharomyces cerevisiae: a hypothesis on the nature of the mutation. Science 163, 1331–1333 (1969).

    Google Scholar 

  • Ephrussi, B.: Nucleo-cytoplasmic relations in microorganisms. Oxford: Clarendon Press 1953.

    Google Scholar 

  • Ephrussi, B., Hottinguer, H.: Direct demonstration of the mutagenic action of euflavine on baker's yeast. Nature 166, 956–957 (1950).

    Google Scholar 

  • Ephrussi, B., Hottinguer, H., Chimenes, A. M.: Action de l'Acriflavine sur les levures. I. La mutation “petite colonie”. Ann. Inst. Pasteur 76, 351–367 (1949).

    Google Scholar 

  • Ephrussi, B., Hottinguer, H., Tavlitzki, J.: Action de l'Acriflavine sur les levures. II. Etude genetique du mutant “petite colonies”. Ann. Inst. Pasteur 76, 419–450 (1949).

    Google Scholar 

  • Ephrussi, B., Slonimski, P. P., Yotsuyanagi, J., Tavlitzki, J: Variations physiologiques et cytologiques de le levure au cours du cycle de le croissance aerobie. C. R. Lab. Carlsberg, Sec. Physiol. 26, 87–97 (1956).

    Google Scholar 

  • Freifelder, D.: Electron microscopic study of the ethidium bromide-DNA complex.J. molec. Biol. 60, 401–403 (1971).

    Google Scholar 

  • Fukuhara, H.: Relative proportions of mitochondrial and nyclear DNA in yeast under various conditions of growth. Europ. J. Biochem. 11, 135–139 (1969).

    Google Scholar 

  • Fuller, W., Waring, M. J.: A molecular model for the interaction of ethidium bromide with deoxyribonucleic acid. Ber. Bunsenges. physik. Chem. 68, 805–808 (1966).

    Google Scholar 

  • Goldring, E. S., Grossman, L. I., Krupnick, D., Cryer, D., Marmur, J.: The petite mutation in yeast: Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J. molec. Biol. 52, 323–335 (1970).

    Google Scholar 

  • Goldring, E. S., Grossman, L. I., Marmur, J.: Petite mutations in yeast. Isolation of mutants containing mitochondrial deoxyribonucleic acid of reduced size. J. Bact. 107, 377–381 (1971).

    Google Scholar 

  • Hahn, F. E. (editor): Complexes of biologically active substances with nucleic acids and their modes of action. Progr. in Molec. Subcell. Biol. 2 (1971).

  • Hawking, F.: Chemotherapy of trypanosomiasis. In: Experimental chemotherapy, ed. by Schnitzer, R. J., and Hawking, F., p. 129–287. New York: Academic Press 1963.

    Google Scholar 

  • Hill, G. C., Anderson, W.: Effects of acriflavine on the mitochondria and kinetoplast of Crithidia fasciculata. J. Cell Biol. 41, 547–561 (1969).

    Google Scholar 

  • Hollenberg, C. P., Borst, P.: Conditions that prevent ϱ induction by ethidium bromide. Biochem. biophys. Res. Commun. 5, 1250–1254 (1971).

    Google Scholar 

  • Hollenberg, C. P., Borst, P., Bruggen, E. F. J. van: Mitochondrial DNA. V. A 25 μ closed circular duplex DNA molecule in wild-type yeast mitochondria. Structure and genetic complexity. Biochim. biophys. Acta (Amst.) 209, 1–15 (1970).

    Google Scholar 

  • Jayaraman, J., Cotman, C., Mahler, H. R., Sharp, C. W.: Biochemical correlates of respiratory deficiency. VII. Glucose repression. Arch. Biochem. Biophys. 116, 224–251 (1966).

    Google Scholar 

  • Le Pecq, J.-B., Paoletti, C.: A fluorescent complex between ethidium bromide and nucleic acids. J. molec. Biol. 27, 87–106 (1967).

    Google Scholar 

  • Lerman, L. S.: Structural consideration in the interaction of DNA and acridines. J. molec. Biol. 3, 18–30 (1961).

    Google Scholar 

  • Mahler, H. R., Mehrotra, B. D., Perlman, P. S.: Formation of yeast mitochondria. V. Ethidium bromide as a probe for the function of mitochondrial DNA. Progr. Molec. Subcell. Biol. 2, 274–296 (1971).

    Google Scholar 

  • Mahler, H. R., Perlman, P. S.: Effects of mutagenic treatment by ethidium bromide on cellular and mitochondrial phenotype. Arch. Biochem. Biophys. 148, 115–129 (1972a).

    Google Scholar 

  • Mahler, H. R., Perlman, P. S.: Mutagenesis by ethidium bromide and mitochondrial membrane. J. Supramol. Structure 1, 105–124 (1972b).

    Google Scholar 

  • Mahler, H. R., Perlman, P. S., Slonimski, P., Deutsch, M. J., Fukuhara, H., Faye, C.: Information content of mitochondrial DNA. Fed. Proc. 30, 1149, Abst. 561 (1971).

    Google Scholar 

  • Mandel, M.: Nucleic acids in protozoa. In: Chemical zoology, ed. by Florkin, M., and Scheer, B. T., vol. 1. p. 541. New York: Academic Press 1967.

    Google Scholar 

  • Marcovich, H.: Action de l'acriflavine sur les levures. VIII. Determination du composant actif et etude de l'Euflavine. Ann. Inst. Pasteur 81, 452–468 (1951).

    Google Scholar 

  • Mehrotra, B. D., Mahler, H. R.: Characterization of some unusual DNAs from the mitochondria from certain “petite” strains of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 128, 685–703 (1968).

    Google Scholar 

  • Mounolou, J. C.: Role d'un ADN spécifique dans le déterminisme génétique et physiologique des mitochondries de la levure. Thèse, Faculté des Sciences de Paris (1967).

  • Mounolou, J. C., Jakob, H., Slonimski, P. P.: Mitochondrial DNA from yeast “petite” mutants: Specific changes of buoyant density corresponding to different cytoplasmic mutations. Biochem. biophys. Res. Commun. 24, 218–224 (1966).

    Google Scholar 

  • Nagai, S., Yanagashima, N., Nagai, H.: Advances in the study of the respiration-deficient mutation in yeast and other microorganisms. Bact. Rev. 25, 404–426 (1961).

    Google Scholar 

  • Nagley, P., Linnane, A. W.: Mitochondrial DNA deficient petite mutants of yeast. Biochem. biophys. Res. Commun. 39, 989–995 (1970).

    Google Scholar 

  • Newton, B. A.: Interaction of berenil with deoxyribonucleic acid and some characteristics of the berenil-nucleic acid complex. Biochem. J. 105, 50p. (1967).

    Google Scholar 

  • O'Brien, R. L., Hahn, F. E.: Chloroquine, structural requirements for binding to deoxyribonucleic acid and antimalarial activity. In: Antimicrobial agents and chemotherapy, p. 315. 1966.

  • Ogur, M., St. John, R., Nagai, S.: Tetrazolium overlay techniques for population studies of respiration deficiency in yeast. Science 125, 928–929 (1957).

    Google Scholar 

  • Paoletti, J., Le Pecq, J. B.: Resonance energy transfer between ethidium bromide molecules bound to nucleic acids: Does intercalation wind or unwind the DNA helix? J. molec. Biol. 59, 43–62 (1971).

    Google Scholar 

  • Perlman, P. S.: The nature of mitochondrial gene products. Ph. Dissertation, Indiana University 1971.

  • Perlman, P. S., Mahler, H. R.: Molecular consequence of ethidium bromide mutagenesis. Nature (Lond.) New Biol. 231, 12–16 (1971a).

    Google Scholar 

  • Perlman, P. S., Mahler, H. R.: A premutational state induced in yeast by ethidium bromide. Biochem. biophys. Res. Commun. 44, 261–267 (1971b).

    Google Scholar 

  • Preer, J. H., Jr.: Extrachromosomal inheritance: Hereditary symbionts, mitochondria, chloroplasts. Ann. Rev. Genet. 5, 361–406 (1971).

    Google Scholar 

  • Riou, G., Delain, E.: Abnormal circular DNA molecules induced by ethidium bromide in the kinetoplast of Trypanosoma cruzi. Proc. nat. Acad. Sci. (Wash.) 64, 618–625 (1969).

    Google Scholar 

  • Robertson, M.: Discussion. In: Adaptation in microorganisms, p. 76–77. Cambridge: University Press 1953.

    Google Scholar 

  • Roodyn, D. B., Wilkie, D.: The biogenesis of mitochondria. London-Methuen 1960.

    Google Scholar 

  • Roudsky, D.: Sur les trypanosomes. Paris: Publication de l'Institut Pasteur et de la Societe de Biologie 1923.

    Google Scholar 

  • Sager, R.: Cytoplasmic genes and organelles. New York: Academic Press 1972, esp. Ch. 4.

    Google Scholar 

  • Simpson, L.: Effect of acriflavine on the kinetoplast of Leishmania tarentolae. J. Cell Biol. 37, 660–670 (1968).

    Google Scholar 

  • Slonimski, P. P.: A specific relation between enzymic adaptation and cytoplasmic mutation. In: Adaptation in microorganisms, p. 76–97. Cambridge: University Press 1953.

    Google Scholar 

  • Slonimski, P. P., Perrodin, G., Croft, J. H.: Ethidium bromide induced mutation of yeast mitochondria: Complete transformation of cells into respiratory deficient nonchromosomal “petites”. Biochem. biophys. Res. Commun. 30, 232–239 (1968).

    Google Scholar 

  • Steinert, M., Assel, S. van: The loss of kinetoplastic DNA in two species of Trypanosomidae treated with acriflavine. J. Cell Biol. 34, 439–447 (1967).

    Google Scholar 

  • Trager, W., Rudzinska, M. A.: The riboflavine requirement and the effects of acriflavine on the fine structure of the kinetoplast of Leishmania tarentolae. J. Protozool. 11, 133–145 (1964).

    Google Scholar 

  • Waring, M.: Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: Evidence for molecular models involving intercalation. J. molec. Biol. 54, 247–279 (1970).

    Google Scholar 

  • Williamson, D. H.: The effect of environmental and genetic factors on the replication of mitochondrial DNA in yeast. In: Control of organelle development, Miller, P. L., ed., p. 247–276, Cambridge: University Press 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ch. Auerbach

Publication No. 2047.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahler, H.R., Perlman, P.S. Induction of respiration deficient mutants in Saccharomyces cerevisiae by Berenil. Molec. Gen. Genet. 121, 285–294 (1973). https://doi.org/10.1007/BF00433228

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00433228

Keywords

Navigation