Virchows Archiv A

, Volume 371, Issue 3, pp 251–263 | Cite as

Stereology of liver biopsies from healthy volunteers

  • H. P. Rohr
  • J. Lüthy
  • F. Gudat
  • M. Oberholzer
  • C. Gysin
  • L. Bianchi
Article

Summary

The stereologioal model and the base-line data of normal human liver needle biopsy-specimens are presented. Four reference systems were introduced: 1 cm3 of liver tissue, 1 cm3 of hepatoeyte, 1 cm3 of hepatocytic cytoplasm and the volume of an average “mononuclear” hepatocyte. The sampling was done at three levels of magnification (1,000 ×, 5,000 × and 10,000 ×). A lobular differentiation was not considered. The baseline data show strikingly small variations (s.e. less than 10%) within the individual biopsy specimen and within the group of four biopsies. There is no principal difference between human beings presented here, rats, mice and dogs. Only the mean individual volume of human hepatocytes is clearly larger than in rodents. The problems and limitations of stereological work on liver biopsy specimens are discussed.

Key words

Human liver Electron microscopy Stereology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolender, R. P.: Stereological analysis of the Guinea pig pancreas. I. Analytical model and quantitative description of nonstimulated pancreatic exocrine cells. J. Cell Biol. 61, 269–287 (1974)Google Scholar
  2. Cossel, L.: Die menschliche Leber im Elektronenmikroskop. Jena: Gustav Fischer 1964Google Scholar
  3. Frigg, M., Rohr, H. P.: Morphometry of liver mitochondria in vitamin E-deficiency. Exp. molec. Path. (in preparation)Google Scholar
  4. Giger, H.: Ermittlung der mittleren Maßzahlen von Partikeln eines Körpersystems durch Messungen auf dem Rand eines Schnittbereiches. Z. angew. Math. Phys. 18, 883–913 (1967)Google Scholar
  5. Glagoleff, A. A.: On the geometrical methods of quantitative mineralogic analysis of rocks. Tr. Inst. Econ. Min. Metal, Moscow, 59, (1933)Google Scholar
  6. Gudat, F., Bianchi, L., Sonnabend, W., Thiel, G., Aenishaenslin, W., Stalder, G. A.: Pattern of core and surface expression in liver tissue reflects state of specific immune response in hepatitits B. Lab. Invest. 32, 1–9 (1975)Google Scholar
  7. Hess, F. A., Weibel, E. R., Preisig, R.: Morphometry of dog liver. Normal base-line data. Virchows Arch. Abt. B 12, 303–317 (1973)Google Scholar
  8. Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961)Google Scholar
  9. Mayhew, T. M., Cruz Orive, L. M.: Caveat on the use of the Delesse principle of areal analysis for estimating component volume densities. J. Microscopy 102, 195–207 (1974)Google Scholar
  10. Novikoff, A. G.: Cell heterogeneity within the hepatic lobule of the rat. (Staining reactions.) J. Histochem. Cytochem. 7, 240–244 (1959)Google Scholar
  11. Novikoff, A. G., Essner, E.: The liver cell. Some new approaches to its study. Amer. J. Med. 29, 102–131 (1960)Google Scholar
  12. Reith, A., Broiczka, D., Nolte, J., Staudte, H. W.: The inner membrane of mitochondria under influence of triiodothyronine and riboflavin deficiency in heart muscle and liver of the rat. Exp. Cell Res. 77, 1–17 (1973)Google Scholar
  13. Reith, A., Schueler, B.: Demonstration of cytochrome oxidase activity with diaminobenzidine. A biochemical and electron microscope study. J. Histochem. 20, 583–589 (1972)Google Scholar
  14. Reith, A., Schueler, B., Vogell, W.: Quantitative elektronenmikroskopische Untersuchungen zur Struktur des Leberläppchens normaler Ratten. Z. Zellforsch. 89, 225–240 (1968)Google Scholar
  15. Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  16. Rohr, H. P., Riede, U. N.: Experimental metabolic disorders and the subcellular reaction pattern. Current topics in pathology, Vol. 58, pp. 1–48. Berlin-Heidelberg-New York: Springer (1973)Google Scholar
  17. Rohr, H. P., Oberholzer, M., Bartsch, G., Keller, W.: Morphometry in experimental pathology (methods, baseline data and applications). Int. Rev. exp. Path. 15, 233–325 (1976)Google Scholar
  18. Staeubli, W., Hess, R., Weibel, E. R.: Correlated morphometric and biochemical studies on the liver. II. Effects of phenobarbital on rat hepatocytes. J. Cell Biol. 42, 92–112 (1969)Google Scholar
  19. Weibel, E. R.: Stereological principles for morphometry in electron microscopic cytology. Int. Rev. Cytol. 26, 235–302 (1969)Google Scholar
  20. Weibel, E. R.: Stereological techniques for electron microscopic morphometry. In: Hayat M. A., Principles and techniques of electron microscopy, pp. 237–296. New York: Van Nostrand Reinhold Comp. 1973Google Scholar
  21. Weibel, E. R., Kistler, G. S., Scherle, W. P.: Practical Stereological methods for morphometric cytology. J. Cell Biol. 30, 23–48 (1966)Google Scholar
  22. Weibel, E. R., Staeubli, W., Gnaegy, H. R., Hess, F.: Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J. Cell Biol. 42, 68–91 (1969)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • H. P. Rohr
    • 1
  • J. Lüthy
    • 1
  • F. Gudat
    • 1
  • M. Oberholzer
    • 1
  • C. Gysin
    • 1
  • L. Bianchi
    • 1
  1. 1.Department of PathologyUniversity of BaselBasel

Personalised recommendations