Skip to main content
Log in

The functional pool of brain catecholamines: Its size and turnover rate

  • Reviews
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Behavioral data are reviewed that give evidence for an indiscriminate involvement of brain catecholamines (CA), especially dopamine (DA), in nervefunction, regardless of the time elapsed from their synthesis. Critical analysis of biochemical and pharmacological studies shows that a clear-cut distribution of brain catecholamines in two compartments [‘newly synthesized’ (NS) and ‘main storage’] is not at all established, and moreover that there is no adequate proof that the difference in turnover rates attributed to these two supposed pools is due to a preferential extraneuronal release of NS-CA during nerve function rather than to a preferential (nonfunctional) intraneuronal deamination of NS-CA, or at least of NS-DA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlenius, S., Andén, N.-E., Engel, J.: Restoration of locomotor activity in mice by low l-Dopa doses after suppression by alpha-methyltyrosine but not by reserpine. Brain Res. 62, 189–199 (1973)

    Google Scholar 

  • Almgren, O., Lundborg, P.: Correlation of the recovery of the granular uptake-storage mechanism and the nerve impulse induced release of (3H)noradrenaline after reserpine. J. Pharm. Pharmacol. 23, 671–677 (1971)

    Google Scholar 

  • Andén, N.-E., Corrodi, H., Fuxe, K.: Turnover studies using synthesis inhibition. In: Metabolism of amines in the brain, G. Hooper, ed., pp. 38–47. London: McMillan 1969

    Google Scholar 

  • Besson, M. J., Cheramy, A., Glowinski, J.: Effects of amphetamine and desmethylimipramine on amines synthesis and release in central catecholamine-containing neurons. Eur. J. Pharmacol. 7, 111–114 (1969)

    Google Scholar 

  • Chiueh, C. C., Moore, K. E.: d-Amphetamine-induced release of “newly synthesized” and “stored” dopamine from the caudate nucleus in vivo. J. Pharmacol. Exp. Ther. 192, 642–653 (1975)

    Google Scholar 

  • Clarke, D. E., Sampath, S. S.: Studies on the functional role of intraneuronal monoamine oxidase. J. Pharmacol. Exp. Ther. 187, 539–549 (1973)

    Google Scholar 

  • Costa, E.: Methods for measuring indolealkylamine and catecholamine turnover rate “in vivo”. In: Chemistry and brain development, pp. 157–174. London: Plenum Press 1971

    Google Scholar 

  • Costa, E., Groppetti, A., Naimzada, M. K.: Effects of amphetamine on the turnover rate of brain catecholamines and motor activity. Br. J. Pharmacol. 44, 742–751 (1972)

    Google Scholar 

  • Costa, E., Neff, N. H.: Isotopic and non-isotopic measurements of the rate of catecholamine biosynthesis. In: Biochemistry and pharmacology of the basal ganglia, E. Costa, L. J. Coté, and M. D. Yahr, eds., pp. 141–155. New York: Raven Press 1966

    Google Scholar 

  • Dahlström, A.: Aminergic transmission. Introduction and short review. Brain Res. 62, 441–460 (1973)

    Google Scholar 

  • Deguchi, T., Axelrod, J.: Supersensitivity and subsensitivity of the beta-adrenergic receptor in pineal gland regulated by catecholamine transmitter. Proc. Natl. Acad. Sci. USA 70, 2411–2414 (1973)

    Google Scholar 

  • Doteuchi, M., Wang, C., Costa, E.: Compartmentation of dopamine in rat striatum. Mol. Pharmacol. 10, 225–234 (1974)

    Google Scholar 

  • Fibiger, H. C., Trimbach, C., Campbell, B. A.: Enhanced stimulant properties of (+)-amphetamine after chronic reserpine treatment in the rat: mediation by hypophagia and weight loss. Neuropharmacology 11, 57–67 (1972)

    Google Scholar 

  • Fog, R.: On stereotypy and catalepsy: studies on the effect of amphetamines and neuroleptics in rats. Ph. D. dissertation in psychiatry, University of Copenhagen (Munksgaard, Copenhagen) 1972

    Google Scholar 

  • Franklin, K. B. J., Herberg, L. J.: Self-stimulation and noradrenaline: evidence that inhibition of synthesis abolishes responding only if the “reserve” pool is dispersed first. Brain Res 97, 127–132 (1975)

    Google Scholar 

  • Fuxe, K., Nyström, M., Tovi, M., Smith, R., Oegren, S.-O.: Central catecholamine neurons, behavior and neuroleptic drugs: an analysis to understand the involvement of catecholamines in schizophrenia. J. Psychiatr. Res. 11, 151–161 (1974)

    Google Scholar 

  • Glowinski, J.: Some characteristics of the ‘functional’ and ‘main storage’ compartments in central catecholaminergic neurons. Brain Res. 62, 489–493 (1973)

    Google Scholar 

  • Glowinski, J., Axelrod, J.: Effects of drugs on the disposition of 3H-norepinephrine in the rat brain. Pharmacol. Rev. 18, 775–785 (1966)

    Google Scholar 

  • Häggendal, J., Lindqvist, M.: Disclosure of labile monoamine fractions in brain and their correlation to behavior. Acta Physiol. Scand. 60, 351–357 (1964)

    Google Scholar 

  • Häggendal, J., Malmfors, T.: The effect of nerve stimulation on catecholamines taken up in adrenergic nerves after reserpine pretreatment. Acta Physiol. Scand. 75, 33–38 (1969)

    Google Scholar 

  • Herz, A., Bläsig, J., Papeschi, R.: Role of catecholaminergic mechanisms in the expression of the morphine abstinence syndrome in rats. Psychopharmacologia (Berl.) 39, 121–143 (1974)

    Google Scholar 

  • Javoy, F., Glowinski, J.: Dynamic characteristics of the ‘functional compartment’ of dopamine in dopaminergic terminals of the rat striatum. J. Neurochem. 18, 1305–1311 (1971)

    Google Scholar 

  • Javoy, F., Hamon, M., Glowinski, J.: Disposition of newly synthesized amines in cell bodies and terminals of central catecholaminergic neurons. I. Effect of amphetamine and thioproperazine on the metabolism of CA in the caudate nucleus, the substantia nigra and the ventromedial nucleus of the hypothalamus. Eur. J. Pharmacol. 10, 178–188 (1970)

    Google Scholar 

  • Khalsa, J. H., Davis, W. M.: Effects of a dopamine beta-hydroxylase inhibitor on amphetamine-induced hyperactivity in rats. J. Pharm. Pharmacol. 27, 620–622 (1975)

    Google Scholar 

  • Kopin, I. J., Breese, G. R., Krauss, K. R., Weise, V. K.: Selective release of newly synthesized norepinephrine from the cat spleen during sympathetic nerve stimulation. J. Pharmacol. Exp. Ther. 161, 271–278 (1968)

    Google Scholar 

  • Korf, J., Roth, R. H., Aghajanian, G. K.: Alterations in turnover and endogenous levels of norepinephrine in cerebral cortex following electrical stimulation and acute axotomy of cerebral noradrenergic pathways. Eur. J. Pharmacol. 23, 276–286 (1973)

    Google Scholar 

  • Marsden, C. A., Curzon, G.: Studies on the behavioral effects of tryptophan and p-chlorophenylalanine. Neuropharmacology 15, 165–171 (1976)

    Google Scholar 

  • Moore, K. E., Dominic, J. A.: Tyrosine hydroxylase inhibitors. Fed. Proc. 30, 859–870 (1971)

    Google Scholar 

  • Müller, R. A., Thönen, H., Axelrod, J.: Increase in tyrosine hydroxylase activity after reserpine administration. J. Pharmacol. Exp. Ther. 169, 74–79 (1969)

    Google Scholar 

  • Papeschi, R.: Dopamine, extrapyramidal system and psychomotor function. Psychiatr. Neurol. Neurochir. (Amster.) 75, 13–48 (1972)

    Google Scholar 

  • Papeschi, R.: Behavioral and biochemical interaction between AMT and (+)-amphetamine: relevance to the identification of the functional pool of brain catecholamines. Psychopharmacologia (Berl.) 45, 21–28 (1975)

    Google Scholar 

  • Papeschi, R., Munkvad, I.: Relation of the effect of neuroleptics in animals to pharmacological parkinsonism and antipsychotic action in man. In: Psychopharmacology, sexual disorders and drug abuse, pp. 415–429. Amsterdam and London: North-Holland 1973

    Google Scholar 

  • Papeschi, R., Randrup, A.: Catalepsy, sedation and hypothermia induced by alpha-methyl-p-tyrosine in the rat. An ideal tool for screening of drugs active on central catecholaminergic receptors. Pharmakopsychiatr. Neuropsychopharmakol. 6, 137–157 (1973)

    Google Scholar 

  • Papeschi, R., Randrup, A., Munkvad, I.: Effect of ECT on dopaminergic and noradrenergic mechanisms. II. Effect on dopamine and noradrenaline concentrations and turnovers. Psychopharmacologia (Berl.) 35, 159–168 (1974)

    Google Scholar 

  • Papeschi, R., Theiss, P., Herz, A.: Effects of morphine on the turnover of brain catecholamines and serotonin in rats. Acute morphine administration. Eur. J. Pharmacol. 34, 253–261 (1975)

    Google Scholar 

  • Randrup, A., Munkvad, I.: Biochemical, anatomical and psychological investigations of stereotyped behavior induced by amphetamine. In: Int. Symp. Amphetamines and Related Compounds, E. Costa and S. Garattini, eds., pp. 695–713. New York: Raven Press 1970

    Google Scholar 

  • Reinhold, K., Bläsig, J., Herz, A.: Changes in brain concentration of biogenic amines and the antinociceptive effect of morphine in rats. Naunyn Schmiedebergs Arch. Pharmacol. 278, 69–80 (1973)

    Google Scholar 

  • Roth, R. H., Stone, E. A.: The action of reserpine on noradrenaline biosynthesis in sympathetic nerve tissue. Biochem. Pharmacol. 17, 1581–1590 (1968)

    Google Scholar 

  • Sedvall, G. C., Weise, V. K., Kopin, I.: The rate of norepinephrine synthesis measured in vivo during short intervals; influence of adrenergic nerve impulse activity. J. Pharmacol. Exp. Ther. 159, 274–282 (1968)

    Google Scholar 

  • Stein, L.: Self-stimulation of the brain and the central stimulant action of amphetamines. Fed. Proc. 23, 836–850 (1964)

    Google Scholar 

  • Stinus, L., Le Moal, M., Cardo, B.: Autostimulation et catecholamines. I. Intervention possible des deux «compartiments» (compartiment fonctionnel et compartiment de reserve). Physiol. Behav. 9, 175–182 (1972)

    Google Scholar 

  • Stinus L., Thierry, A. M.: Self-stimulation and catecholamines. II. Blockade of self-stimulation by treatment with alpha-methylparatyrosine and the reinstatement by catecholamine precursor administration. Brain Res. 64, 189–198 (1973)

    Google Scholar 

  • Theiss, P., Papeschi, R., Herz, A.: Effects of morphine on the turnover of brain catecholamines and serotonin in rats. Chronic morphine administration. Eur. J. Pharmacol. 34, 263–271 (1975)

    Google Scholar 

  • Thierry, A. M., Blane, G., Glowinski, J.: Dopamine-norepinephrine: another regulatory step of norepinephrine synthesis in central noradrenergic neurons. Eur. J. Pharmacol. 14, 303–307 (1971)

    Google Scholar 

  • Thierry, A. M., Blanc, G., Glowinski, J.: Further evidence for the heterogenous storage of noradrenaline in central noradrenergic terminals. Naunyn Schmiedebergs Arch. Pharmacol. 279, 255–266 (1973)

    Google Scholar 

  • Thoa, N. B., Wooten, F. G., Axelrod, J., Kopin, I. J.: On the mechanism of release of norepinephrine from sympathetic nerves induced by depolarizing agents and sympathomimetic drugs. Mol. Pharmacol. 11, 10–18 (1975)

    Google Scholar 

  • Weiner, N., Bjur, R.: The role of intraneuronal monoamine oxidase in the regulation of norepinephrine synthesis. In: Monoamine oxidases. New vistas, E. Costa and M. Sandler, eds., pp. 409–420, New York: Raven Press 1972

    Google Scholar 

  • Weiner, N., Cloutier, G., Bjur, R., Pfeffer, R. I.: Modification of norepinephrine synthesis in intact tissue by drugs and during short-term adrenergic nerve stimulation. Pharmacol. Rev. 24, 203–221 (1972)

    Google Scholar 

  • Weissman, A., Koe, B. K., Tenen, S. S.: Antiamphetamine effects following inhibition of tyrosine hydroxylase. J. Pharmacol. Exp. Ther. 151, 339–352 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papeschi, R. The functional pool of brain catecholamines: Its size and turnover rate. Psychopharmacology 55, 1–7 (1977). https://doi.org/10.1007/BF00432809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00432809

Key words

Navigation