Advertisement

Red blood cell anti-oxidant parameters in silicosis

  • P. J. A. Borm
  • A. Baste
  • E. F. M. Wouters
  • J. J. Slangen
  • G. M. H. Swaen
  • Tj. de Boorder
Article

Summary

The anti-oxidant phenotype was determined in red blood cells and plasma of a group of male control subjects (n = 48) and a number of silicosis patients (n = 19). Haemoglobin, reduced and oxidized glutathione, glutathione peroxidase and superoxide dismutase were determined in red blood cells after haemolysis. In plasma, water soluble fluorescent substances were determined as a measure of in vivo lipid peroxidation. A significant increase in red blood cell glutathione was observed in silicosis patients. Moreover, some factors of the anti-oxidant system are strongly correlated in the diseased, but not in the healthy subjects. We hypothesize that individual susceptibility differences towards the development of silicosis after prolonged inhalation of silica is associated with a genetically controlled antioxidant phenotype.

Key words

Silicosis Anti-oxidant system Erythrocytes SOD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bast A, Haenen GRMM (1984) Cytochrome P-450 and glutathione: what is the significance of their interrelationship in lipidperoxidation? Trends Biochem Sci 9:510–513Google Scholar
  2. Beutler E (1985) Chemical toxicity of the erythrocyte. In: Irons RD (ed) Toxicology of the blood and bone marrow. Raven Press, New York, pp 39–49Google Scholar
  3. Bucca C, Veglio F, Rolla G, Cacciabue M, Cicconi C, Ossola M, Nuzzi A, Aviolo G, Angeli A (1984) Serum angiotensin converting enzyme (ACE) in silicosis. Eur J Resp Dis 65:477–480Google Scholar
  4. Clemens MR, Einsele H, Remmer H, Waller HD (1985) Decreased susceptibility of red blood cells to lipid peroxidation in patients with alcohlic liver cirrhosis. Clin Chim Acta 145:283–288Google Scholar
  5. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14Google Scholar
  6. Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon Press, Oxford England, pp 250–263Google Scholar
  7. Hendricks ChA, May AV (1971) Pneumoconiose bij werken in de kolenmijnen. In: Burger GC (ed) Arbeids- en Bedrijfsgeneeskunde. Stenfert Kroese, Leiden, The Netherlands, pp 304–316Google Scholar
  8. Hissin PJ, Hilf R (1976) A fluorometric method for the determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226Google Scholar
  9. Hornsby PJ, Crivello JF (1983) The role of lipidperoxidation and biological antioxidants in the function of the adrenal cortex. Part I: A background review. Mol Cell Endocrinol 30:1–20Google Scholar
  10. Julicher RHM, Tijburg LBM, Sterrenberg L, Bast A, Koomen JM, Noordhoek J (1984) Decreased defence against free radicals in rat heart during normal reperfusion after hypoxic, ischemic and calcium-free perfusion. Life Sci 35:1281–1288Google Scholar
  11. Koskinenj H, Järvisalo J, Huuskonen MS, Koivula T, Mutanen P, Pitkänen E (1983) Serum lysozomal enzyme activities in silicosis and asbestosis. Eur J Resp Dis 64:64:182–188Google Scholar
  12. Koskinen H, Nordman H, Fröseth B (1984) Serum lysozyme concentration in silicosis patients and workers exposed to silica dust. Eur J Resp Dis 65:481–485Google Scholar
  13. Lidell D, Miller K (1983) Individual susceptibility to inhaled particles: a methodological assay. Scand J Work Environ Health 9:1–8Google Scholar
  14. Lilienfeld AM, Lilienfeld DE (1980) Foundations of epidemiology, 2nd edn. Oxford University Press, Oxford, pp 323–354Google Scholar
  15. Lipecka K, Domanski T, Daniszewska K, Grabowska B, Pietrowicz D, Lindner P, Cisowska B, Górski H (1982) Lethal doses of ionizing radiation versus endogenous level of superoxide dismutase. Stud Biophys 89:57–64Google Scholar
  16. Lynn WS (1983) Activation of human inflammatory cells. In: Lynn WS (ed) Inflammatory cells and lung disease. CRC Press Inc, Boca Raton, Florida, Chapter 4Google Scholar
  17. Maral J, Puget K, Michelson AM (1977) Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. BBRC 77:1525–1535Google Scholar
  18. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055Google Scholar
  19. Medeiros MHG, Bechara EJH, Naoum Pc, Mouráo CA (1983) Oxygen toxicity and hemoglobinemia in subjects from a highly polluted town. Arch Environ Health 38:11–16Google Scholar
  20. Minami M, Koshi K, Homma K, Suzuki Y (1982) Changes of the activities of superoxide dismutase after exposure to the fume of heavy metals and the significance of zinc in the tissue. Arch Toxicol 49:215–225Google Scholar
  21. Minchin RF, Boyd MR (1983) Localization of metabolic activation and deactivation systems in the lung: significance to the pulmonary toxicity of xenobiotics. Ann Rev Pharmacol Toxicol 23:217–238Google Scholar
  22. Parkes WR (1982) Occupational lung disorders, 2nd edn. Butterworths, LondonGoogle Scholar
  23. Patterson CE, Butler JA, Byrne FD, Rhodes ML (1985) Oxidant lung injury: intervention with sulfhydryl reagents. Lung 163:23–32Google Scholar
  24. Riley DJ, Kerr JS (1985) Oxidant injury of the extracellular matrix: potential role in the pathogenesis of pulmonary emphysema. Lung 163:1–13Google Scholar
  25. Rowley DA, Halliwell B (1982) Superoxide-dependent formation of hydroxyl radicals in the presence of thiol compounds. FEBS Lett 138:33–36Google Scholar
  26. Tsuchida M, Miura T, Mizutani K, Aibara K (1985) Water soluble fluorescent substances in mouse and human sera as a parameter of in vivo lipidperoxidation. Biochim Biophys Acta 834:196–204Google Scholar
  27. White CW, Repine JE (1985) Pulmonary antioxidant defense mechanisms. Exp Lung Res 8:81–96Google Scholar
  28. Yarosz AM (1984) Lipid peroxidation in the blood in pneumonia. Bull Exp Biol Med 97:486–488Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. J. A. Borm
    • 1
  • A. Baste
    • 2
  • E. F. M. Wouters
    • 3
  • J. J. Slangen
    • 1
  • G. M. H. Swaen
    • 1
  • Tj. de Boorder
    • 1
  1. 1.Department of Occupational MedicineState University of LimburgMaastrichtThe Netherlands
  2. 2.Department of PharmacochemistryFree University AmsterdamAmsterdamThe Netherlands
  3. 3.Department of PulmonologyState University of LimburgMaastricht

Personalised recommendations