Psychopharmacology

, Volume 51, Issue 2, pp 199–204 | Cite as

Changes in drug-induced stereotyped behavior after 6-OHDA lesions in noradrenaline neurons

  • C. Bræstrup
Animal Studies

Abstract

Drug-induced stereotyped behaviors are often assessed by rating scales where the eventual appearance of sniffing, licking, and biting are rated as increasing intensity of dopaminergic stimulation. A 6-OHDA induced bilateral lesion (4×3-8 μg/4 μl 6-OHDA) in the ascending noradrenaline neurons, lateral to the medial raphe nucleus, of 180 g Wistar rats, affecting selectively noradrenaline and not dopamine or 5-hydroxytryptamine neurons, caused a change in the d-amphetamine sulphate (5–3 mg/kg s.c.) and phenethylamine hydrochloride (40 mg/kg) induced stereotyped sniffing behavior to the performance of discontinuous or continuous licking behavior; biting/gnawing was rarely induced. The site of the lesion and the partial antagonism of 6-OHDA by the uptake inhibitor protriptyline indicate a noradrenergic influence on the behavioral expression of the dopaminergically mediated stereotyped behavior.

Key words

Stereotyped behavior 6-Hydroxydopamine Noradrenaline ascending neurons Amphetamine Phenethylamine Dopamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnfred, T., Randrup, A.: Cholinergic mechanism in brain inhibiting amphetamine-induced stereotyped behaviour. Acta pharmacol. (Kbh.) 26, 383–394 (1968)Google Scholar
  2. Bræstrup, C.: Identification of free and conjugated 3-methoxy-4-hydroxyphenylglycol (MOPEG) in rat brain by gas chromatography and mass fragmentography. Analyt. Biochem. 55, 420–431 (1973)Google Scholar
  3. Bræstrup, C., Andersen, H., Randrup, A.: The monoamine oxidase B inhibitor deprenyl potentiates phenylethylamine behaviour in rats without inhibition of catecholamine metabolite formation. Europ. J. Pharmacol. 34, 181–187 (1975)Google Scholar
  4. Bræstrup, C., Randrup, A.: Stereotyped behaviour in rats induced by phenylethylamine, dependence on dopamine and noradrenaline and possible relation to psychoses? In: Phenylethylamine: Biological mechanisms and clinical aspects, A. D. Mosnaim, ed. New York: Dekker 1977Google Scholar
  5. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,α-dimethyl-meta-tyramine. Europ. J. Pharmacol 5, 367–373 (1969)Google Scholar
  6. Creese, I., Iversen, S. D.: The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 83, 419–436 (1975)Google Scholar
  7. Evetts, K. D., Iversen, L. L.: Effects of protriptyline on the depletion of catecholamines induced by 6-hydroxydopamine in the brain of the rat. J. Pharm. Pharmacol. 22, 540–543 (1970)Google Scholar
  8. Fuxe, K., Eneroth, P., Gustavsson, J., Hökfelt, T., Jonsson, G., Löfström, A., Skett, P.: Effects of 6-OH-DA induced lesions of the ascending noradrenaline and adrenaline pathways to the tel and diencephalon on FSH, LH and prolactin secretion in the ovarieotomized female rat. In: Chemical tools in catecholamine research, Vol. I, G. Jonsson, T. Malmfors, and Ch. Sachs, eds., pp. 273–283. Amsterdam: North-Holland 1975Google Scholar
  9. Hollister, A., Breese, G., Cooper, B.: Comparison of tyrosine hydroxylase and dopamine-β-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatments on d-amphetamine induced motor activity. Psychopharmacologia (Berl.) 36, 1–16 (1974)Google Scholar
  10. Hökfelt, T., Fuxe, K., Goldstein, M., Johansson, O.: Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66 235–251 (1974)Google Scholar
  11. Hökfelt, T., Ungerstedt, U.: Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: An electron and fluorescence microscopic study with special reference to intracerebral injection of the nigro-striatal dopamine system. Brain Res. 60, 269–297 (1973)Google Scholar
  12. Jacobowitz, D., Palkovits, M.: Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. J. comp. Neurol. 157, 13–28 (1974)Google Scholar
  13. Javoy, F., Agid, Y., Sotelo, C.: Specific and non-specific catecholaminergic neuronal destruction by intracerebral injection of 6-OH-DA in the rat. In: Chemical tools in catecholamine research, Vol I, G. Jonsson, T. Malmfors, and Ch. Sachs, eds., pp. 75–82. Amsterdam: North-Holland 1975Google Scholar
  14. Jonsson, J., Lewander, T.: A method for the simultaneous determination of 5-hydroxy-3-indole-acetic acid (5-HIAA) and 5-hydroxytryptamine (5-HT) in brain tissue and cerebrospinal fluid. Acta physiol. scand 78, 43–51 (1970)Google Scholar
  15. König, J., Klippel, R.: The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brain stem. Baltimore: Williams and Wilkins 1963Google Scholar
  16. Lidbrink, P.: The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rat. Brain Res. 74, 19–40 (1974)Google Scholar
  17. Lidbrink, P., Jonsson, G.: Noradrenaline nerve terminals in the cerebral cortex: Effects on noradrenaline uptake and storage following axonal lesion with 6-hydroxydopamine. J. Neurochem. 22, 617–626 (1974)Google Scholar
  18. Lindvall, O., Björklund, A., Nobin, A., Stenevi, U.: The adrenergic innervation of the rat thalamus as revealed by the glyoxylic acid fluorescence method. J. comp. Neurol. 154, 317–348 (1974)Google Scholar
  19. Mogilnicka, E., Bræstrup, C.: Noradrenergic influence on the stereotyped behaviour induced by amphetamine, phenethylamine and apomorphine. J. Pharm. Pharmacol. 28, 253–255 (1976)Google Scholar
  20. Molander, L., Randrup, A.: Investigation of the mechanism by which l-DOPA induced gnawing in mice. Acta pharmacol. (Kbh.) 34, 312–324 (1974)Google Scholar
  21. Molander, L., Randrup, A.: Effects of thymoleptics on behaviour associated with changes in brain dopamine. II. Modification and potentiation of apomorphine-induced stimulation of mice. Psychopharmacology 49, 139–144 (1976)Google Scholar
  22. Pycock, C., MacG. Donalson, I., Marsden, C.: Circling behaviour produced by unilateral lesions in the region of the locus coeruleus in rats. Brain Res. 97, 317–329 (1975)Google Scholar
  23. Randrup, A., Munkvad, I.: Biochemical, anatomical and psychological investigations of stereotyped behavior induced by amphetamines. In: Amphetamines and related compounds, E. Costa and S. Garattini, eds., pp. 695–713. New York: Raven Press 1970Google Scholar
  24. Randrup, A., Mukvad, I., Udsen, P.: Adrenergic mechanisms and amphetamine-induced abnormal behaviour. Acta pharmacol. (Kbh.) 20, 145–157 (1963)Google Scholar
  25. Randrup, A., Munkvad, I., Scheel-Krüger, J.: Mechanisms by which amphetamines produce stereotyped, aggression and other behavioral effects. In: Psychopharmacology, sexual disorders and drug abuse, T. Ban, J. Boissier, G. Gessa, H. Heimann, L. Hollister, H. Lehmann, I. Munkvad, H. Steinberg, F. Sulser, A. Sundwall, and O. Vinar, eds., pp 659–673. Amsterdam-London: North-Holland, Prague: Avicenum, Czechoslovak Medical Press 1973Google Scholar
  26. Roberts, D., Zis, A., Fibiger, H.: Ascending catecholamines pathways and amphetamine-induced locomotor activity: importance of dopamine and apparent non-involvement of norepinephrine. Brain Res. 93, 441–454 (1975)Google Scholar
  27. Rossum, J. van: Psychopharmacology of amphetamines. Psychiat. Neurol. Neurochir. (Amst.) 75, 165–178 (1972)Google Scholar
  28. Scheel-Krüger, J.: Central effects of anticholinergic drugs measured by the apomorphine gnawing test in mice. Acta pharmacol. (Kbh.) 28, 1–16 (1970)Google Scholar
  29. Scheel-Krüger, J., Hasselager, E.: Studies of various amphetamines, apomorphine and clonidine on body temperature and brain 5-hydroxytryptamine metabolism in rats. Psychopharmacologia (Berl.) 36, 189–202 (1974)Google Scholar
  30. Snyder, S. H.: Catecholamines in the brain as mediators of amphetamine psychosis. Arch. gen. Psychiat. 27, 169–179 (1972)Google Scholar
  31. Ungerstedt, U.: On the anatomy, pharmacology and function of the nigro-striatal dopamine system. Stockholm: Thesis 1971Google Scholar
  32. Yang, H.-Y., Neff, N. H.: β-Phenylethylamine: A specific substrate for type B monoamine oxidase of brain. J. Pharmacol. exp. Ther. 187, 365–371 (1973)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • C. Bræstrup
    • 1
  1. 1.Psychopharmacological Research LaboratorySct. Hans Hospital, Dept. ERoskildeDenmark

Personalised recommendations