Marine Biology

, Volume 94, Issue 4, pp 613–624 | Cite as

Frontal ambulacral and peribuccal areas of the spatangoid echinoid Echinocardium cordatum (Echinodermata): a functional entity in feeding mechanism

  • C. De Ridder
  • M. Jangoux
  • L. De Vos


Echinocardium cordatum (Pennant, 1777) were collected in Normandy, France, in March and November 1985. The grooved frontal ambulacrum of the burrowing echinoid E. cordatum functions in transferring surface sediment from the apex to the mouth of the echinoid. Particles that fall down the burrow's chimney accumulate between the spines of the apical tuft and are taken over by specialized groove spines. Due to the slope of the groove and the type of floor spines it harbours, four successive regions can be recognized, namely the adapical region, the fasciolar region, the ambital region, and the adoral region. As a general rule aboral floor spines (i.e. club-shaped, golf-club-shaped, and isodiametric spines) function in gathering particles while propelling them mouthwards; they simultaneously embed particles in a mucous string. The oral floor spines (i.e. spatulated spines) function in hauling and guiding the mucous string towards the peribuccal area of the echinoid. Once facing the peribuccal area, particles are picked up by the peribuccal tube feet that either transfer them into the esophagus or scrape them out against the peribuccal spines. Spine-retained particles are either sucked up by the pumping action of the esophagus or fall to the burrow's floor where the tube feet may pick them up again. Together the apical tuft, the frontal groove, and the peribuccal area form an efficient food-collecting system that transfers trapped surface particles from the echinoid apex down to the mouth. Compared to that of most other spatangoids the frontal ambulacrum of E. cordatum is highly specialized. Such specialization is related to colonization of fine sediment, as is the occurrence of a chimney linking the burrow to the sediment surface. Actually the burrow's chimney is the only route for oxygen and food supply; it acts as a real ecological umbilical cord for spatangoids buried in fine sediment.


Oxygen Food Supply Sediment Surface General Rule Surface Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Buchanan, J. B.: The biology of Echinocardium cordatum (Echinodermata: Spatangoidea) from different habitats. J. mar. biol. Ass. U.K. 46, 97–114 (1966)Google Scholar
  2. Chesher, R. H.: The morphology and function of the frontal ambulacrum of Moira atropos. Bull. mar. Sci. 13, 549–573 (1963)Google Scholar
  3. Chesher, R. H.: The systematics of sympatric species in West Indian spatangoids: a revision of the genera Brissopsis, Plethotaenia, Palaeopneustes and Saviniaster. Stud. trop. Oceanogr. 7, 1–168 (1968)Google Scholar
  4. Chesher, R. H.: Contribution to the biology of Meoma ventricosa (Echinoidea, Spatangoidea). Bull. mar. Sci. 19, 72–110 (1969)Google Scholar
  5. De Ridder, C.: Feeding and some aspects of the gut structure in the spatangoid echinoid, Echinocardium cordatum (Pennant). In: Proc. int. Echinoderm Conf. Tampa Bay, pp 5–9. Ed. by J. M. Lawrence. Rotterdam: Balkema 1982Google Scholar
  6. De Ridder, C.: La Nutrition chez les Echinodermes psammivores. Etude particulière du Spatangide fouisseur, Echinocardium cordatum (Pennant) (Echinodermata, Echinoidea), 275 pp. Thèse de doctorat, Université Libre de Bruxelles 1986Google Scholar
  7. De Ridder, C., Jangoux, M. and E. Van Impe: Food selection and absorption efficiency in the spatangoid echinoid, Echinocardium cordatum (Echinodermata). In: Proc. int. Echinoderm Conf. Galway, pp 245–251. Ed. by B. F. Keegan and B. D. S. O'Connor. Rotterdam: Balkema 1985Google Scholar
  8. Ferber, I. and J. M. Lawrence: Distribution, substratum preference and burrowing behaviour of Lovenia elongata (Gray) (Echinoidea: Spatangoidea) in the Gulf of Elat (Aqaba), Red Sea. J. exp. mar. Biol. Ecol. 22, 207–225 (1976)Google Scholar
  9. Gandolfi-Hornyold, A.: Über die Nahrungsaufnahme der Spatangiden. Biol. Zbl. 29, 759–762 (1909)Google Scholar
  10. Gandolfi-Hornyold, A.: Beiträge zur Biologie und Anatomie der Spatangiden. Mém. Soc. Sci. nat. Fribourg, (Zool. 1) 1, 25–67 (1910)Google Scholar
  11. Gandolfi-Hornyold, A.: Über den Aufenthalt im Sand. Eingraben, Kanalbau und Schleimabsonderung der Spatangiden. Int. Cong. Zool. 9, 458–467 (1914)Google Scholar
  12. Nichols, D.: The histology of the tube feet and clavulae of Echinocardium cordatum. Q. J. microsc. Sci. 100, 73–87 (1959a)Google Scholar
  13. Nichols, D.: Changes in the chalk heart-urchin Micraster interpreted in relation to living forms. Phil. Trans. R. Soc. Lond. B 242, 347–437 (1959b)Google Scholar
  14. Péquignat, E.: Biologie des Echinocardium cordatum (Pennat) de la Baie de Seine. Forma Functio 2, 121–168 (1970)Google Scholar
  15. Smith, A. B.: The structure and arrangement of echinoid tubercles. Phil. Trans. Roy. S. Lond. B 289, 1–54 (1980a)Google Scholar
  16. Smith, A. B.: The structure, function and evolution of tube feet and ambulacral pores in irregular echinoids. Paleontology 23, 39–83 (1980b)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • C. De Ridder
    • 1
  • M. Jangoux
    • 1
  • L. De Vos
    • 2
  1. 1.Laboratoire de Biologie marine (C.P. 160)Université Libre de BruxellesBruxellesBelgium
  2. 2.Laboratoire de Biologie animale et cellulaireUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations