Optical and Quantum Electronics

, Volume 27, Issue 1, pp 15–33 | Cite as

Limitations in the perturbation analysis of bent finite-clad fibres and waveguides

  • S. J. Garth
  • W. M. Henry
  • J. D. Love


The transverse shift in the field distribution and the correction to the propagation constant of the fundamental and symmetric cladding modes on bent finite-clad single-mode fibres and slab waveguides are evaluated from perturbation theory for effective index values extending below the cladding index. Analytical results are derived in both geometries for the step-profile that are valid within the overall limitations of the theory. However, it is found that, for the fibre geometry only, the method breaks down at certain discrete wavelengths because of degeneracies that occur between the HE12 (LP02) and TE01 (LP11) mode propagation constants.


Communication Network Perturbation Theory Field Distribution Mode Propagation Propagation Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. MORGAN, J. D. C. JONES, P. G. HARPER and J. S. BARTON, Opt. Commun. 85 (1991) 17.Google Scholar
  2. 2.
    C. M.DE BLOK and P. MATHIESSE, Electron. Lett. 20 (1984) 109.Google Scholar
  3. 3.
    D. A. JACKSON and J. D. C. JONES, Opt. Acta. 33 (1986) 1469.Google Scholar
  4. 4.
    C. VASSALLO, Opt. Quantum Electron. 17 (1985) 411.Google Scholar
  5. 5.
    D. MARCUSE, Appl. Opt. 21 (1983) 4208.Google Scholar
  6. 6.
    E. A. MARCATILI, Bell Syst. Tech. J. 48 (1969) 2103.Google Scholar
  7. 7.
    A. W. SNYDER and J. D. LOVE, Optical Waveguide Theory (Chapman & Hall, London, 1983).Google Scholar
  8. 8.
    D. MARCUSE, Appl. Opt. 21 (1982) 4208.Google Scholar
  9. 9.
    D. MARCUSE, J. Opt. Soc. Am. 66 (1976) 311.Google Scholar
  10. 10.
    K. PETERMANN, Arch. Elektron. Ueber. 30 (1976) 337.Google Scholar
  11. 11.
    S. J. GARTH, IEE Proc. Pt. J. 134 (1987) 221.Google Scholar
  12. 12.
    S. KAWAKAMI, M. MIYAGI and S. NISHIDA, Appl. Opt. 14 (1975) 2558.Google Scholar
  13. 13.
    S. J. GARTH, J. Lightwave Technol. 7 (1989) 1889.Google Scholar
  14. 14.
    M. MIYAGI and G. L. YIP, Opt. Quantum Electron. 8 (1976) 335.Google Scholar
  15. 15.
    S. J. GARTH, J. Lightwave Technol. 6 (1988) 445.Google Scholar
  16. 16.
    B. LAMOUROUX, B. PRADE and J. Y. VINET, J. Mod. Opt. 38 (1991) 761.Google Scholar
  17. 17.
    H. HEILBLUM and J. H. HARRIS, IEEE J. Quantum Electron. QE- 11 (1975) 75.Google Scholar
  18. 18.
    J. D. LOVE and W. M. HENRY, Electron. Lett. 26 (1990) 727.Google Scholar
  19. 19.
    R. A. SAMMUT, C. D. HUSSEY, J. D. LOVE and A. W. SNYDER, IEEE Proc. Pt. H. (1981) 173.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. J. Garth
    • 1
  • W. M. Henry
    • 2
  • J. D. Love
    • 3
  1. 1.Department of MathematicsUniversity College (UNSW) Australian Defence Force AcademyCanberraAustralia
  2. 2.Department of Electronic EngineeringLa Trobe UniversityBundooraAustralia
  3. 3.Optical Sciences CentreAustralian National UniversityCanberraAustralia

Personalised recommendations