, Volume 26, Issue 4, pp 195–209 | Cite as

Difference equations approach to the analysis of layered systems

  • Alexander Linkov
  • Nikolay Filippov


The analysis of chain-like structures is tackled on the basis of difference equations. The advantages of such an approach are outlined. Difference equations for layered systems are derived both in terms of tractions and displacements. Interconnections with other methods are stated. Detailed analysis is given for the case when solution for a single layer is presented by Fourier series (integrals). Practical conclusions are driven at.

Key words

Elasticity layered systems difference equations 


Nell' articolo vengono esaminate, sulla base di equazioni alle differenze, strutture di tipo ‘catena’. Si mettono in rilievo i vantaggi di un tale approccio. Per i sistemi complessi sono state ottenute equazioni alle differenze sia in termini di trazioni che spostamenti. Vengono stabiliti legami con altri metodi. Si fa un'analisi dettagliata del caso in cui la soluzione per un singolo strato ě rappresentata sotto la forma della serie di Fourier (integrale). Vengono esposti pure risultati pratici.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alperin I. G., ‘The problem of an infinite beam on the elastic half-space’, Appl. Math. Mech. II (3) (1939), 287–318 (in Russian).Google Scholar
  2. 2.
    Banerjee P. K. and Butterfield R., Boundary Element Method in Geomechanics, Wiley, New York, 1977.Google Scholar
  3. 3.
    Buffler H., ‘Der Spannungszustand in einem geschichteten Körper bei axialsymmetrischer Belastung’, Ingenieur-archiv. 30 (6) (1961), 417–430.Google Scholar
  4. 4.
    Buffler H., ‘Die Bestimmung des Spannungs und Verschiebungszustandes eines geschichteten Körpes mit Hilfe von Übertragungsmatrizen’, Ingenieur-archiv. 31 (1) (1962), 229–240.Google Scholar
  5. 5.
    Bulychev N. S., Amusin B. Z. and Olovjannyi A. G., Calculation of Supports for Permanent Workings, Nedra, Moscow, 1974 (in Russian).Google Scholar
  6. 6.
    Dougall J., ‘Analytical theory of the equilibrium of an isotropic elastic plate’, Trans. Roy. Soc. Edinburgh XLI, part 1 (1903–4), 129–228.Google Scholar
  7. 7.
    Filippov, N. A. and Sidorov, V. S., ‘Stresses in a layered rock massif’, Trudi All-Union Res. Inst. Mine Geomech. Surv., No. 95, 1975.Google Scholar
  8. 8.
    Filippov, N. A., Development of the method for determination stresses and protected zones in a layered rock massif’, thesis submitted for degree of Candidate of Science, The All-Union Research Institute of Mine Geomechanics and Surveying (VNIMI), Leningrad, 1977 (in Russian).Google Scholar
  9. 9.
    Filon L. N. G., ‘On an approximate for the bending of a beam of rectangular cross-section under any system of load with special reference to the points of concentrated or discontinuous loading’, Philos. Trans. Roy. Soc. London Ser. A 201 (1903), 63–155.Google Scholar
  10. 10.
    Godunov, S. K. and Ryabenkii, V. S., Difference Schemes (Russian edn), Nauka, 1977; (English edn), North-Holland, 1987.Google Scholar
  11. 11.
    Zemochkin B. N., ‘Plane problem for an infinitely long beam on elastic foundation’, Military Engineering Academy, Moscow, 1937 (in Russian).Google Scholar
  12. 12.
    Kolchin G. B. and Favermann A. A., The Theory of Elasticity for Inhomogeneous Bodies, Sticenci, Kishinev, 1972 (in Russian).Google Scholar
  13. 13.
    Linkov, A. M., Filippov, N. A. and Fot, K. K., ‘Difference equations in layered media problems’, Dep. Paper, VINITI, No. 6812-B88, 31.08.88, pp. 1–24 (in Russian).Google Scholar
  14. 14.
    Linkov, A. M., Filippov, N. A. and Fot, K. K., ‘On stability of numerical solution of problems for a system of elastic layers’, Dep. Paper, VINITI, No. 6813-B88, 31.08.88, pp. 1–20 (in Russian).Google Scholar
  15. 15.
    Linkov A. M., Filippov N. A. and Fot K. K., ‘On the solution of problems for layered media by means of Fourier expansions’, Investigations in Mechanics of Structures and Materials, Engineering and Building Institute, Leningrad, 1989, pp. 42–46 (in Russian).Google Scholar
  16. 16.
    Maier, G. and Novati, G., ‘On boundary element-transfer matrix analysis of layered elastic systems’, 7th Internat. Conf. on Boundary Elements in Engineering, Como (Italy), 1985, pp. 1–28.Google Scholar
  17. 17.
    Maier G. and Novati G., ‘Boundary element elastic analysis of layered soils by a successive stiffness method’, Internat. J. Numer. Anal. Meth. Geomech. 11 (5) (1987), 435–447.Google Scholar
  18. 18.
    Maier, G. and Novati, G., Elastic analysis of layered soils by boundary elements: Comparative remarks on various approaches, Proc. 6th Internat. Conf. on Numerical Methods in Geomechanics, Swoboda, Innsbruck, 1988, pp. 925–933.Google Scholar
  19. 19.
    Nikishin V. S. and Shapiro G. S., The Problem of the Elasticity Theory for Multilayered Media, Nauka, Moscow, 1973 (in Russian).Google Scholar
  20. 20.
    Ohda M., Shigematsu T. and Hara T., ‘Combined finite element-transfer matrix method’, J. Engrg. Mech. Amer. Soc. Civil Engrs. 110(9) (1984), 1335–1349.Google Scholar
  21. 21.
    Novati G., On the analysis of elastic layers by a Fourier series, Green's function approach, Atti Accad. Naz. Lincei LXXXI (3) (1987), 293–304.Google Scholar
  22. 22.
    Pestel E. C. and Leckie F. A., Matrix Methods of Elasto-mechanics, McGraw-Hill, New York, 1963.Google Scholar
  23. 23.
    Petrshin, V. N., Privarnikov, A. K. and Shevliakov, U. A., ‘To the solution of the problem for multilayered foundations’, Proc. Acad. Sci. USSR, Mechanica (2) (1965), 138–143 (in Russian).Google Scholar
  24. 24.
    Petukhov I. M. et al., Protective Seams, Nedra, Leningrad, 1972 (in Russian).Google Scholar
  25. 25.
    Ruppoport, R. M., ‘Boussinesque's problem for layered elastic half-space’, Proc. Polytechnical Institute of Leningrad (5) (1948), 3–18 (in Russian).Google Scholar
  26. 26.
    Ruppoport, R. M., ‘To the question of finding the solution of axisymmetric and plane elasticity problems for multilayered media’, Proc. Hydrotechnical Institute, Leningrad (73) (1963), 193–204 (in Russian).Google Scholar
  27. 27.
    Ruppoport, R. M., ‘To the question of finding the solution for displacements of three-dimensional elasticity problem for multilayered half-space’, Proc. Hydrotechnical Institute, Leningrad (81) (1966), 149–155 (in Russian).Google Scholar
  28. 28.
    Samarskii A. A. and Gulin A. V., Numerical Methods, Nauka, Moscow, 1989 (in Russian).Google Scholar
  29. 29.
    Samarskii A. A. and Nikolaev E. S., Numerical Methods for Grid Equations, Nauka, Moscow, 1978.Google Scholar
  30. 30.
    Shapiro G. S., ‘Stress conditions in infinite cylindrical shell and unlimited thick plate’, Rep. Acad. USSR 37 (9) (1942), 288–290 (in Russian).Google Scholar
  31. 31.
    Shevliakov U. A., Matrix Algorithms in the Theory of Elasticity for Inhomogeneous Media, Visha Shcola, Kiev-Odessa, 1977 (in Russian).Google Scholar
  32. 32.
    Vigdorovich, I. E., Lamziuk, V. D. and Privarnikov, A. K., ‘Using the method of compliance functions for the solution of boundary problems for multilayered foundations’, Rep. Ukrainian Acad. Sci., Ser. A (6) (1979), 434–437 (in Russian).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Alexander Linkov
    • 1
  • Nikolay Filippov
    • 1
  1. 1.Institute for Engineering EconomicsLeningradUSSR

Personalised recommendations