Immunogenetics

, Volume 22, Issue 1, pp 35–48 | Cite as

A structural somatic variant of the Kk antigen is generated by point mutation

  • Günther Karmann
  • Konrad T. Beyreuther
  • Matthias Cramer
  • Bodo Holtkamp
  • Susanne Proksa
  • Klaus Rajewsky
Article

Abstract

We have previously selected structural variants of the Kk antigen from a (C3 × D2)F1 T-cell lymphoma. Those mutants were identified by the loss of certain epitopes defined by monoclonal antibodies. The variant Kk molecule from HK13.S3 cells is no longer recognized by 40% of the trinitrophenyl-specific, Kk-restricted cytotoxic T lymphocytes. Here we report on the primary structure of the altered Kk molecules from the cell line HK13.S3. Comparison with the parental Kk reveals a single base pair exchange, GCG to GTG, that results in an alanine to valine exchange in position 40 of the protein. This observation emphasizes that minor structural alterations in class I molecules may have a strong effect on the H-2-restricted T-cell response.

Keywords

Lymphoma Monoclonal Antibody Alanine Base Pair Point Mutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, B., Burgert, H. G., Archibald, A. L., and Kvist, S.: Complete nucleotide sequence of the murine H-2Kk gene. Comparison of three H-2K locus alleles. Nucleic Acids Res. 12: 9473–9487, 1984Google Scholar
  2. Baltimore, D.: Gene conversion: Some implications for immunoglobulin genes. Cell 24: 592–594, 1981Google Scholar
  3. Benton, W. D. and Davis, J.: Screening gt recombinant clones by hybridization to single plaques in situ. Science 196: 180–182, 1977Google Scholar
  4. Ciavarra, R. and Forman, J.: Cell membrane antigens recognized by anti-viral and anti-trinitrophenyl cytotoxic T lymphocytes. Immunol. Rev. 58: 73–94, 1981Google Scholar
  5. Coligan, J. E., Kindt, T. J., Uehara, H., Martinko, J., and Nathenson, S. G.: Primary structure of a murine transplantation antigen. Nature 291: 35–39, 1981Google Scholar
  6. Corsaro, C. M. and Pearson, M. L.: Enhancing the efficiency of DNA-mediated gene transfer in mammalian cells. Somatic Cell Genet. 7: 603–616, 1981Google Scholar
  7. Holtkamp, B., Fischer Lindahl, K., Segall, M., and Rajewsky, K.: Spontaneous loss and subsequent stimulation of H-2 expression in clones of a heterozygous lymphoma cell line. Immunogenetics 9: 405–421, 1979Google Scholar
  8. Holtkamp, B., Cramer, M., Lemke, H., and Rajewsky, K.: Isolation of a cloned cell line expressing variant H-2Kk using fluorescence-activated cell sorting. Nature 289: 66–68, 1981Google Scholar
  9. Holtkamp, B., Cramer, M., and Rajewsky, K.: Somatic variation of H-2Kk expression and structure in a T-cell lymphoma: Instability, stabilization, high production and structural mutation. EMBO J. 2: 1943–1951, 1983Google Scholar
  10. Kessler, S. W.: Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: Parameters of the interaction of antibody-antigen complexes with protein A. J. Immunol. 115: 1617–1624, 1975Google Scholar
  11. Kimball, E. S., Nathenson, S. G., and Coligan, J. E.: Amino acid sequence of residues 1–98 of the H-2Kd murine major histocompatibility alloantigen: Comparison with H-2Kb and H-2Db reveals extensive localized differences. Biochemistry 20: 3301–3308, 1981Google Scholar
  12. Klein, J. and Figueroa, F.: Polymorphism of the mouse H-2 loci. Immunol. Rev. 60: 23–57, 1981Google Scholar
  13. Krawinkel, U., Zoebelein, G., Brüggemann, M., Radbruch, A., and Rajewsky, K.: Recombination between antibody heavy chain variable-region genes: Evidence for gene conversion. Proc. Natl. Acad. Sci. U.S.A. 80: 4997–5001, 1983Google Scholar
  14. Kvist, S., Roberts, L., and Dobberstein, B.: Mouse histocompatibility genes: Structure and organisation of a Kd gene. EMBO J. 2: 245–254, 1983Google Scholar
  15. Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970Google Scholar
  16. Lalanne, J.-L., Delarbre, C., Gachelin, G., and Kourilsky, P.: A cDNA clone containing the entire coding sequence of a mouse H-2Kd histocompatibility antigen. Nucleic Acids Res. 11: 1567–1577, 1983Google Scholar
  17. Leder, P., Tiemeier, D., and Enquist, L.: EK2 derivatives of bacteriophage lambda useful in the cloning of DNA from higher organisms: The gtWES system. Science 196: 175–177, 1977Google Scholar
  18. Lemke, H., Hämmerling, G. J., and Hämmerling, U.: Fine specificity analysis with monoclonal antibodies of antigens controlled by the major histocompatibility complex and by the Qa/TL region in mice. Immunol. Rev. 47: 175–206, 1979Google Scholar
  19. Lillehoj, E. P. and Coligan, J. E.: Amino acid sequence analysis of the H-2Kk alloantigen: Complete sequence of residues 1–98 and partial sequence from 99 to 263. Mol. Immunol. 21: 185–190, 1984Google Scholar
  20. Maloy, W. L. and Coligan, J. E.: Primary structure of the H-2Db alloantigen. II. Additional amino acid sequence information, localization of a third site of glycosylation and evidence for K and D region specific sequences Immunogenetics 16: 11–22, 1982Google Scholar
  21. Maniatis, T., Fritsch, E. F., and Sambrock, J.: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 1982Google Scholar
  22. Melief, C.: Remodelling the H-2 map. Immunol. Today 4: 57–61, 1983Google Scholar
  23. Moore, K. W., Sher, B. T., Sun, Y. H., Eakle, K. A., and Hood, L.: DNA sequence of a gene encoding a BALB/c mouse Ld transplantation antigen. Science 215: 679–682, 1982Google Scholar
  24. Mulligan, R. C. and Berg, P.: Expression of a bacterial gene in mammalian cells. Science 209: 1422–1427, 1980Google Scholar
  25. Nairn, R. and Yamaga, K.: Biochemistry of the gene products from murine MHC mutants. Annu. Rev. Genet. 14: 241–277, 1980Google Scholar
  26. Nairn, R., Nathenson, S. G., and Coligan, J. E.: Amino acid sequence of cyanogen bromide fragment CN-C (residues 24–98) of the mouse histocompatibility antigen H-2Dd: A comparison of the amino-terminal 100 residues of H-2Dd, Db, Kd, and Kb reveals discrete areas of diversity. Biochemistry 20: 4739–4745, 1981Google Scholar
  27. Pease, L. R., Schulze, D. H., Pfaffenbach, G. M., and Nathenson, S. G.: Spontaneous H-2 mutants provide evidence that a copy mechanism analogous to gene conversion generates polymorphism in the major histocompatibility complex. Proc. Natl. Acad. Sci. U.S.A. 80: 242–246, 1983Google Scholar
  28. Quade, K.: Transformation of mammalian cells by avian myelocytomatosis virus and avian erythroblastosis virus. Virology 98: 461–465, 1979Google Scholar
  29. Rajan, T. V. and Halay, E. D.: Anti-H-2 hybridoma antibodies as immunoselective agents. I. Isolation of forward and reverse mutations for reactivity with a monoclonal antibody. Immunogenetics 14: 253–262, 1981Google Scholar
  30. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., and Roe, B. A.: Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143: 161–178, 1980Google Scholar
  31. Schreier, P. H. and Cortese, R.: A fast and simple method for sequencing DNA cloned in the single-stranded bacteriophage M13. J. Mol. Biol. 129: 169–172, 1979Google Scholar
  32. Schulze, D. H., Pease, L. R., Geier, S. S., Reyes, A. A., Sarmiento, L. A., Wallace, R. B., and Nathenson, S. G.: Comparison of the cloned H-2Kbm1 variant gene with the H-2Kb gene shows a cluster of seven nucleotide differences. Proc. Natl. Acad. Sci. U.S.A. 80: 2007–2011, 1983Google Scholar
  33. Steinmetz, M., Moore, K. W., Frelinger, J. G., Sher, B. T., Shen, F.-W., Boyse, E. A., and Hood, L.: A pseudogene homologous to mouse transplantation antigens: Transplantation antigens are encoded by eight exons that correlate with protein domains. Cell 25: 683–692, 1981Google Scholar
  34. Taketani, S., Krangel, M. S., Pious, D., and Strominger, J. L.: Structural analysis of HLA-A2 antigen from immunoselected mutant 8.6.1: Further definition of an HLA-A2-specific serological determinant. J. Immunol. 131: 2935–2938, 1983Google Scholar
  35. Tonegawa, S.: Somatic generation of antibody diversity. Nature 302: 575–581, 1983Google Scholar
  36. Vohr, H.-W., Holtkamp, B., and Rajewsky, K.: Somatic H-2Kk variants reveal nonidentity of serological and cytotoxic T cell-defined Kk determinants. Eur. J. Immunol. 13: 846–851, 1983Google Scholar
  37. Weichel, W., Liesegang, B., Gehrke, K., Göttlinger, C., Holtkamp, B., Radbruch, A., Stackhouse, T. K., and Rajewsky, K.: Inexpensive upgrading of a FACS I: Isolation of rare somatic variants by doublefluorescence sorting. Cytometry, in press, 1985Google Scholar
  38. Weiss, E. H., Mellor, A., Golden, L., Fahrner, K., Simpson, E., Hurst, J., and Flavell, R. A.: The structure of a mutant H-2 gene suggests that the generation of polymorphism in H-2 genes may occur by gene conversion-like events. Nature 301: 671–674, 1983Google Scholar
  39. Weiss, E. H., Golden, L., Fahrner, K., Mellor, A. L., Devlin, J. J., Bullman, H., Tiddens, H., Bud, H., and Flavell, R. A.: Organization and evolution of the class I gene family in the major histocompatibility complex of the C57BL/10 mouse. Nature 310: 650–655, 1984Google Scholar
  40. Xin, J.-H., Kvist, S., and Dobberstein, B.: Identification of an H-2Kd gene using a specific cDNA probe. EMBO J. 1: 467–471, 1982Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Günther Karmann
    • 1
  • Konrad T. Beyreuther
    • 1
  • Matthias Cramer
    • 1
  • Bodo Holtkamp
    • 1
  • Susanne Proksa
    • 1
  • Klaus Rajewsky
    • 1
  1. 1.Institute for GeneticsCologne 41Germany

Personalised recommendations