Skip to main content
Log in

Narrowband tunable sub-millimetre hot hole injectionless semiconductor laser and its use for cyclotron resonance investigation

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A narrowband far-infrared laser on intersubband transitions of hot holes was constructed and investigated. Two methods were used: mode selection due to intercavity Fabry-Perot resonator and selection of a narrow spectral lasing region by special multilayer mirror. The emission spectra of the laser were determined. The radiation bandwidth measured was Δν≤0.2 cm-1 as compared with Δν≃15–30 cm-1 for nonselective resonator. Lasing with selective resonator could occur at any two wavelengths in the ranges 80–120 and 150–200 μm. The wavelength was modified by altering electric and magnetic fields. The radiation power was about 10 W and of the same kind as that of a laser without a mode selector. The narrowband laser was used in investigation of CR of electrons in n-InSb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Special Issue on Far-infrared Semiconductor Lasers. Opt. Quantum Electron. 23 (1991) No. 2.

    Google Scholar 

  2. A. A.ANDRONOV, V. A.KOZLOV, L. S.MAZOV and V. N.SHASTIN, Pis'ma Zh. Eksp. Teor.Fiz. 30 (1979) 585. [JETP Lett. 30 (1979) 551.]

    Google Scholar 

  3. L. E.VOROBJEV, F. I.OSOKIN, V. I.STAFEEV and V. N.TULUPENKO, Pis'ma Zh. Eksp. Teor. Fiz. 34 (1981) 125. [JETP Lett. 34 (1981) 118.]

    Google Scholar 

  4. L. E.VOROBJEV, F. I.OSOKIN, V. I.STAFEEV and V. N.TULUPENKO, Pis'ma Zh. Eksp. Toer. Fiz. 35 (1982) 360. [JETP Lett. 34 (1982) 440.]

    Google Scholar 

  5. A. A.ANDRONOV, I. V.ZVEREV, V. A.KOZLOV, J. N.NOZDRIN and V. N.SHASTIN, Pis'ma Zh. Eksp. Teor. Fiz. 40 (1984) 69. [JETP Lett. 40 (1984) 804.]

    Google Scholar 

  6. S.KOMIYAMA, N.IIZUKA and Y.AKASAKA, Appl. Phys. Lett. 47 (1985) 958.

    Google Scholar 

  7. A. V.MURAVJEV, S. G.PAVLOV and V. N.SHASTIN, Pis'ma Zh. Eksp. Teor. Fiz. 52 (1990) 959.

    Google Scholar 

  8. Y. B.VASIL'EV and Y. L.IVANOV, Pis'ma Zh. Eksp. Teor. Fiz. 10 (1984) 949. [JETP Lett. 10 (1984) 398.]

    Google Scholar 

  9. M.BORN and E.WOLF, Principles of Optics (Pergamon Press, Oxford, 1964).

    Google Scholar 

  10. E. V.LOEWENSTEIN, D. R.SMITH and R. L.MORGAN, Appl. Opt. 12(2) (1973) 398.

    Google Scholar 

  11. K.UNTERRAINER, M.HELM, E.GORNIK et al. Appl. Phys. Lett. 52 (1988) 564.

    Google Scholar 

  12. R. C.COMPTON, Appl. Opt. 24 (1985) 217.

    Google Scholar 

  13. R. C.COMPTON and L. B.WHITBOURN, Appl. Opt. 23 (1984) 3236.

    Google Scholar 

  14. D.FROLICH, L.STEIN, H. W.SCHRODER et al. Appl. Phys. 11(1) (1976) 97.

    Google Scholar 

  15. W. R.LEEB, Appl. Phys. 6(2) (1975) 267.

    Google Scholar 

  16. O.MATSUDA and E.OTSUKA, J. Phys. Chem. Sol. 40 (1979) 807.

    Google Scholar 

  17. H.HASEGAWA and R. E.HOWARD, J. Phys. Chem. Solids 21 (1961) 179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobjev, L.E., Danilov, S.N., Donetsky, D.V. et al. Narrowband tunable sub-millimetre hot hole injectionless semiconductor laser and its use for cyclotron resonance investigation. Opt Quant Electron 25, 705–721 (1993). https://doi.org/10.1007/BF00430560

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00430560

Keywords

Navigation