Advertisement

Psychopharmacology

, Volume 50, Issue 2, pp 181–186 | Cite as

Investigations of the mechanism of central action of kinins

  • Janina Moniuszko-Jakoniuk
  • Konstanty Wiśniewski
  • Maria Kościelak
Original Investigations

Abstract

The effects of kinins on the level of norepinephrine, dopamine, and serotonin and on their metabolites, i.e., normetanephrine, homovanillic acid, and 5-hydroxyindoloacetic acid in the brain tissue divided into cerebellum, corpus striatum, cortex, hippocampus, hypothalamus, medulla oblongata, and midbrain were investigated.

It was shown that bradykinin in a dose of 4 μg decreased the content of norepinephrine, in corpus striatum, midbrain, and cerebellum. It also decreased the level of dopamine in corpus striatum but increased the level of serotonin in corpus striatum and midbrain. Similar changes were observed with 100 U/kg of kallikrein.

It was that changed levels of investigated neuromediators are accompanied by changed levels of their metabolites. Bradykinin, in a dose of 4 μg, decreased the level of normetanephrine in corpus striatum, hippocampus, and midbrain and the level of homovanillic acid in corpus striatum, and increased the level of 5-hydroxyindoloacetic acid in corpus striatum and hippocampus.

It was also shown that bradykinin increased norepinephrine uptake by the blood platelets when its level in the platelets was low, and released the absorbed norepinephrine into the medium when the level of norepinephrine was higher.

The above results confirm the existence of an interaction of kinins with neuromediators, in the central nervous system.

Key words

Kinis Biogenic amines Metabolites of amines CNS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, W. B., Solomon, H. M.: The human platelet as a pharmacologic model for the adrenergic neuron. Clin. Pharmacol. Ther. 10, 702–709 (1969)Google Scholar
  2. Andén, N. P., Ross, B. E., Werdinius, B.: The occurrence of domovanillic acid in brain and cerebrospinal fluid and its determination by a fluorimetric method. Life Sci. 2, 448–458 (1963)Google Scholar
  3. Anton, A. H., Sayre, D. F.: Distribution of metanephrine and normetanephrine in various animals and their analysis in diverse biological material. J. Pharmacol. exp. Ther. 153, 15–19 (1966)Google Scholar
  4. Barches, J., Usolin, E.: Serotonin and behavior New York-London: Academic Press 1973Google Scholar
  5. Barthel, W., Haustein, K. O., Markwardt, F.: On the relations between serotonin uptake on function of the transport—ATPase system of blood platelets. Acta biol. med. germ. 31, 713–718 (1973)Google Scholar
  6. Benetato, C. R., Bubuianu, E., Cirmaciu, R., Galesanu, E.: The action of bradykinin on the sympathic adrenergic centers. Rev. Roum. Physiol. 4, 245–250 (1967)Google Scholar
  7. Bertolini, A., Mucci, P., Sternieri, E.: Behavioural effect of bradykinin injected into the cerebro-spinal fluid. Prostaglandins, peptides and amines. P. Montegazza and E. W. Hoston, eds. London-New York: Academic Press 1969Google Scholar
  8. Braszko, J., Koscielak, M.: Effect of, kinins on the central action of serotonin. Pol. J. Pharmacol. Pharma. 27, Suppl. 61–68 (1975)Google Scholar
  9. Ćapek, R.: Some effects of bradykinin on the central nervous system. Bioch. Pharmacol. 10, 61–64 (1962)Google Scholar
  10. Ćapek, R., Masek, K., Sranka, M., Kirsisk M., Śvec, P.: The similarities of the angiotensin and bradykinin action on the central nervous system. Pharmacology 2, 161–170 (1969)Google Scholar
  11. Glowinski, J., Iversen, L. L.: Regional studies of catecholamines in the rat brain—I. The disposition, of (3H) norepinephrine, (3H) dopamine and (3H) Dopa in various regions of the brain. J. Neurochem. 13, 655–669 (1966)Google Scholar
  12. Glowinski, J., Kopin, I. J., Axelrod, J.: Metabolism of (3H) norepinephrine in the rat brain. J. Neurochem. 12, 25–30 (1965)Google Scholar
  13. Gonzalez-Vegas, J. A.: Antagonism of dopamine—mediated inhibition in the nigro-striatal pathway, a mode of action of some catato—inducing drugs. Brain Res. 80, 219–228 (1974)Google Scholar
  14. Graeff, F. G., Pelá, I. R., Rocha e Silva, M.: Behavioural and somatic effects of bradykinin injected into the cerebral ventricles of anesthetized rabbits. Brit. J. Pharmacol. 37, 723–732 (1969)Google Scholar
  15. Haefely, W., Hürlimann, A., Thonen, H.: The effect of bradykinin and angiotensin on ganglionic transmission., In: E. G. Erdös, N. Back, and F. Sicuteri, eds., Hypotensive peptides, pp. 314–328. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  16. Haubrich, D. R., Denzer, J. S.: Simultaneous extraction and fluorometric measurement of brain serotonin, catecholamines, 5-hydroxyindoloacetic acid and homovanillic acid. Analyt. Biochem. 55, 306–312 (1973)Google Scholar
  17. Heath, R. G.: Discussion. Ann. N.Y. Acad. Sci. 104, 311 (1963)Google Scholar
  18. Herman, Z. S.: The effect of noradrenaline on rat's behaviour. Psychopharmacologia (Berl.) 16, 369–374 (1970)Google Scholar
  19. Lambert, G. A., Lang, W. J.: The effects of bradykinin and eledoisin injected into the cerebral ventricles of conscious rats. Europ. J. Pharmacol. 9, 383–386 (1970)Google Scholar
  20. Mannarino, E., Kirshner, N., Nashold, B. S.: The metabolism of (14C) noradrenaline by cat brain in vivo. J. Neurochem. 10, 373–379 (1963)Google Scholar
  21. Moniuszko-Jakoniuk, J., Wiśniewski, K.: The effects of kinins on the psychomotor activity of rats as evaluated by Lat's test. Acta Neurobiol. exp. 34, 621–628 (1974)Google Scholar
  22. Moniuszko-Jakoniuk, J., Wiśniewski, K., Bodzenta, A.: Effect of the activation of the kinin-forming system on the potency of chlorpromazine. Pharmacology 12, 216–223 (1974)Google Scholar
  23. Schanberg, S. M., Schildkraut, J. J., Breese, G. R., Kopin, I. J.: Metabolism of normetanephrine—3H in rat brain—identification of conjugated 3-methoxy-4-hydroxyphenylglycol as the major metabolite. Biochem. Pharmacol. 17, 247–254 (1968)Google Scholar
  24. Sharman, D. F.: Glycol metabolites of noradrenaline in brain tissue. Brit. J. Pharmacol. 36, 523–534 (1969)Google Scholar
  25. Wiśniewski, K., Bodzenta, A.: Kinins and central effects of the acetylcholine. Acta Neurobiol. exp. 35, 85–92 (1975)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Janina Moniuszko-Jakoniuk
    • 1
  • Konstanty Wiśniewski
    • 1
  • Maria Kościelak
    • 1
  1. 1.Department of PharmacologyMedical School in BialystokPoland

Personalised recommendations