Cardiovascular response to interval and continuous training in women

  • David A. Cunningham
  • Donald McCrimmon
  • L. F. Vlach


Three groups of five women (age = 18–25 years) participated in a 12-week training program. Cardiovascular responses up to 85% VO2 max to interval (ITG) and continuous (CTG) training were studied in two groups, before training and after 4, 8, and 12 weeks of training four times per week. A control group was assessed before and after 6 and 12 weeks. Both exercise groups demonstrated significant increases in Cao2C¯vo2 after 8 weeks with only slight further increases after 12 weeks (CTG=8.9%, ITG=20.0% at 85% VO2 max). No significant changes were noted in either group in SV (+ 5 ml ITG, + 9 ml CTG) or in their Qc. These results indicated that, in response to high intensity training, women may demonstrate similar cardiovascular adaptations to training as have been observed for men.

Key words

Cardiac output Hemodynamic response to exercise Arterial-venous oxygen difference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashton, C. H., McHardy, G. J. R.: A rebreathing method for determining mixed venous PCO2 during exercise. J. Appl. Physiol. 18, 668–671 (1963)Google Scholar
  2. Campbell, E. J. M., Howell, J. R. L.: Rebreathing method for measurement of mixed venous PCO2. Br. Med. J. L, 630–633 (1962)Google Scholar
  3. Cunningham, D. A., Hill, J. S.: Effect of training on cardiovascular response to exercise in women. J. Appl. Physiol. 39, 891–895 (1975)Google Scholar
  4. Davies, C. T. M., Sargeant, A. J.: Effects of training on physiological responses to one- and two-leg work. J. Appl. Physiol. 38, 377–381 (1975)Google Scholar
  5. Ekblom, B., åstrand, P., Saltin, B., Stenberg, J., Wallstrom, B.: Effect of training on circulatory response to exercise. J. Appl. Physiol. 24, 518–528 (1968)Google Scholar
  6. Ferguson, R., Montpetit, R., Dubuc, R., Gingras, Y.: L'entrÎment du système de transport d'oxygène par la course continue et par intervalles. Kinanthropologie 2, 171–179 (1970)Google Scholar
  7. Franks, B. D., Cureton, T. K.: Effects of training on time components of the left ventricle. J. Sports Med. Phys. Fit. 9, 80–88 (1969)Google Scholar
  8. Hartley, L. H., Grimby, G., Kilbom, å., Nilsson, N. J., åstrand, I., Bjure, J., Ekblom, B., Saltin, B.: Physical training in sedentary middle-aged and older men III. Cardiac output and gas exchange at submaximal and maximal exercise. Scand. J. Clin. Lab. Invest. 24, 335–344 (1969)Google Scholar
  9. Hohorst, H. J.: l-(+)-Lactate determination with lactic dehydrogenase and DPN. In: Methods of enzymatic analysis, 2nd ed. (Bergmeyer, H. U., ed.), pp. 266–270. New York: Academic Press 1965Google Scholar
  10. Jones, N. L., Campbell, E. J. M., McHardy, G. J. R., Higgs, B. E., Clode, M.: The estimation of carbon dioxide pressure of mixed venous blood during exercise. Clin. Sci. 32, 311–327 (1967)Google Scholar
  11. Jones, N. L., McHardy, G. J. R., Naimark, A., Campbell, E. J. M.: Physiological dead space and alveolar-arterial gas pressure difference during exercise. Clin. Sci. 31, 19–29 (1966)Google Scholar
  12. Jones, N. L., Rebuck, A. S.: Rebreathing equilibrium of CO2 during exercise. J. Appl. Physiol. 35, 538–541 (1973)Google Scholar
  13. Kilbom, å.: Physical training in women. Scand. J. Clin. Lab. Invest. 28, (Suppl. 119), 5–34 (1971)Google Scholar
  14. Macnab, R. B. J., Conger, P. R., Taylor, P. S.: Differences in maximal and submaximal work capacity in men and women. J. Appl. Physiol. 27, 644–648 (1969)Google Scholar
  15. McCrimmon, D. R., Cunningham, D. A., Rechnitzer, P. A., Griffiths, J.: Effect of training on plasma catecholamines in post myocardial infarction patients. Med. Sci. Sports 8, 152–156 (1976)Google Scholar
  16. Paterson, D. H., Cunningham, D. A.: A comparison of methods for the calculation of cardiac output by the indirect (CO2) Fick technique. Eur. J. Appl. Physiol. 35, 223–230 (1976)Google Scholar
  17. Pechar, G. S., McArdle, W. D., Katch, F. I., Magel, J. R., DeLuca, J.: Specificity of cardiorespiratory adaptation to bicycle and treadmill training. J. Appl. Physiol. 36, 753–756 (1974)Google Scholar
  18. Roskam, H.: Optimum patterns of exercise for healthy adults. Can. Med. Assoc. J. 96, 895–899 (1967)Google Scholar
  19. Saltin, B., Blomqvist, G., Mitchell, J. H., Johnson, R. L. Jr., Wildenthal, K., Chapman, C. B.: Response to exercise after bed rest and after training. A longitudinal study of adaptive changes in oxygen transport and body composition. Circulation 38, (Suppl. 7), 1–78 (1968)Google Scholar
  20. Scholander, P. F.: Analyzer for accurate estimation of respiratory gases in one-half cubic centimeter samples. J. Biol. Chem. 67, 235–250 (1947)Google Scholar
  21. Shephard, R. J.: Endurance Fitness, p. 395. Toronto: University of Toronto Press 1969Google Scholar
  22. Wilmore, J. H., Girandola, R. N., Moody, D. L.: Validity of skinfold and girth assessment for predicting alterations in body composition. J. Appl. Physiol. 29, 313–317 (1970)Google Scholar
  23. Winer, B. J.: Statistical Principles in Experimental Design. Toronto: McGraw-Hill 1962Google Scholar
  24. Wolfe, L. A., Cunningham, D. A., Davis, G. M., Rechnitzer, P. A.: Reliability of noninvasive methods for measuring cardiac function in exercise. J. Appl. Physiol. 44, 55–58 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • David A. Cunningham
    • 1
  • Donald McCrimmon
    • 1
  • L. F. Vlach
    • 1
  1. 1.Faculty of Physical Education, Department of PhysiologyUniversity of Western OntarioLondonCanada

Personalised recommendations