, Volume 26, Issue 2–3, pp 161–167 | Cite as

Morse families and constrained mechanical systems. Generalized hyperelastic materials

  • Franco Cardin


The present work deals with the geometrical desingularization of a well-known asymptotic realization of the ideal holonomic constraints in analytical mechanics. A structure of this kind is extended to the theory of continuous materials—in particular, to elastic materials with internal constraints. By using the same geometrical structure, another aim of this paper can be fulfilled: a new type of generalized hyperelastic material is introduced and some physical examples are discussed. This definition of a generalized hyperelastic material globalizes and unifies the usual definition of a hyperelastic material and its analogue for crystalline solids according to Ericksen and Pitteri. We recall that generalized hyperelastic materials can display a multi-valued strain-stress behaviour, as discussed by Ericksen. Such a behaviour can be used to describe phenomena usually regarded as typical of plasticity.

Key words

Constrained systems hyperelasticity symplectic geometry 


In questo lavoro si considera una desingolarizzazione geometrica di una ben nota realizzazione asintotica dei vincoli lisci olonomi in meccanica analitica. Tale struttura è estesa allla meccanica dei continui, in particolare, al caso dei materiali elastici con vincoli interni. Utilizzando lo stesso ambiente geometrico di quest'ultima costruzione si realizza un altro scopo di questa nota: viene introdotta una nuova definizione di materiale iperelastico in senso generalizzato e sono discussi alcuni esempi fisici noti in letteratura. Questa definizione globalizza e unifica l'usuale definizione di materiale iperelastico e il suo analogo per i solidi cristallini secondo Ericksen e Pitteri. Tali materiali possono manifestare una risposta stress-strain multivoca. Questo comportamento può essere utilizzato per la descrizione di fenomenologie tipiche della plasticità.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RubinH. and UngarP., ‘Motion under a strong constraining force’, Comm. Pure Appl. Math., X (1957) 65.Google Scholar
  2. 2.
    EbinD. G., ‘The motion of slightly compressible fluids viewed as motion with strong constraining force’, Ann. Math., 105 (1977) 141.Google Scholar
  3. 3.
    Takens, F., ‘Motion under the influence of a strong constraining force’, Lecture Notes in Math., Springer-Verlag, 1980, p. 424.Google Scholar
  4. 4.
    BenettinG., GalganiL. and GiorgilliA., ‘Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory. Part I’, Comm. Math. Phys., 113 (1987) 87–103.Google Scholar
  5. 5.
    EricksenJ. L., ‘Nonlinear elasticity of diatomic crystals’, Internat. J. Solids and Structures, 6 (1970) 951.Google Scholar
  6. 6.
    EricksenJ. L., ‘Multi-valued strain energy functions for crystals’, Internat. J. Solids and Structures, 18 (1982) 913.Google Scholar
  7. 7.
    PitteriM., ‘On v+1-lattices’, J. Elasticity, 15 (1985) 3.Google Scholar
  8. 8.
    Abraham, R. and Marsden, J. E., Foundations of Mechanics (2nd edn), Benjamin-Cummings, 1978.Google Scholar
  9. 9.
    Benenti, S., ‘Symplectic relations in analytical mechanics’, Proc. IUTAMM-ISIMM Sympos. on Modern Developments in Analytical Mechanics, Torino, 1982.Google Scholar
  10. 10.
    BenentiS., ‘Relazioni simplettiche: la trasformazione di Legendre e la teoria di Hamilton-Jacobi’, Quad. Unione Mat. Italiana, n.33, Pitagora Ed., Bologna, 1988.Google Scholar
  11. 11.
    Maslov, V. P., ‘Théorie des perturbations et méthodes asymptotiques’, Editions de l'Université de Moscou, 1965 (in Russian). Also: Dunod-Gauthier-Villars, Paris, 1971.Google Scholar
  12. 12.
    HörmanderL., ‘Fourier integral operators I’, Acta Math. 127 (1971) 79.Google Scholar
  13. 13.
    Weinstein, A., Lectures on Symplectic Manifolds, CBMS Conf. Series, AMS 29, 1977.Google Scholar
  14. 14.
    Dieudonné, J., Éléments d'Analyse, Gauthier-Villars, Vol. 3, 1974.Google Scholar
  15. 15.
    Tulczyjew, W. M., ‘Control of static mechanical systems’, Proc. Dynamical Systems and Microphysics, CISM, Udine, Italy, 1984, p. 359.Google Scholar
  16. 16.
    TulczyjewW. M., ‘Relations symplectiques et les équations d'Hamilton-Jacobi relativistes’, C. R. Acad. Sci. Paris, 281, série A (1975) 545.Google Scholar
  17. 17.
    Benenti, S. and Tulczyjew, W. M., ‘The geometrical meaning and globalization of the Hamilton-Jacobi method’, Proc. Differential Geometrical Methods in Mathematical Physics, Aix-en-Provence, Salamanca; Lecture Notes in Math., 836, Springer-Verlag, 1979.Google Scholar
  18. 18.
    CardinF., ‘On the geometrical Cauchy problem for the Hamilton-Jacobi equation’, Nuovo Cimento B, 104 (1989) 525.Google Scholar
  19. 19.
    Tulczyjew, W. M., ‘Hamiltonian systems, Lagrangian systems and the Legendre transformation’, Sympos. Math., XIV (1974).Google Scholar
  20. 20.
    CardinF. and ZanzottoG., ‘On constrained mechanical systems: D'Alembert's and Gauss' principles’, J. Math. Phys., 30(7) (1989) 1473.Google Scholar
  21. 21.
    Arnold, V. I., Mathematical Methods in Classical Mechanics, Springer-Verlag, 1978.Google Scholar
  22. 22.
    Gallavotti, G., Meccanica Elementare, Ed. Boringhieri, 1980.Google Scholar
  23. 23.
    TruesdellC. and NollW., ‘The non-linear field theories of mechanics’, Handbuch der Physik, Springer-Verlag, Berlin, Heidelberg, New York, 1965.Google Scholar
  24. 24.
    VianelloM., ‘The representation problem for constrained hyperelastic materials’, Arch. Rational Mech. Anal., 111 (1990) 87.Google Scholar
  25. 25.
    James, R. D., ‘The stability and metastability of quartz’, in: S. Antman et al. (eds), Metastability and Incompletely Posed Problems IMA Vol. Math. Appl., 3, Springer-Verlag, 1987.Google Scholar
  26. 26.
    MorganA. J. A., ‘Some properties of media defined by constitutive equations in implicit form’, Internat. J. Engng Sci., 4 (1966) 155.Google Scholar
  27. 27.
    MorganA. J. A., ‘Properties of a class of constitutive equation stated in a nontrivial implicit form’, in: S.Eskinazi (ed.), Modern Developments in the Mechanics of Continua, Academic Press, New York, London, 1966.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Franco Cardin
    • 1
  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaPadovaItaly

Personalised recommendations