Current Genetics

, Volume 3, Issue 3, pp 213–220 | Cite as

Genetic analysis of the products of a cross involving a suppressive ‘petite’ mutant of S. cerevisiae

  • Elliot B. Gingold


A genetically defined highly suppressive petite yeast strain (ρcob+AsEoCoOoPo) was crossed with a grande strain carrying a multiply marked mitochondrial genome (ρ+ArErCrOrpr). Petite diploid progeny, isolated from individual zygotic clones consisting either of wholly petite or mixtures of grande and petite cells, were characterised genetically by crossing to grande haploids. The diploid petites were found to closely resemble the petite parent and in general not to carry mitochondrial markers from the grande parent. In the petites from the mixed clones recombination was detected, but only within the region of homology between the genomes. These observations are inconsistent with models of suppressiveness based on destructive recombination and suggest that the petite genome eliminates the grande genome from zygotic progeny through being preferentially replicated. The most plausible model to explain the observed pattern of zygotic clones postulates a limited number of mDNA replication sites in zygotes, competition for sites between input mDNA molecules and an advantage in this competition for suppressive ρ mDNA.

Key words

Mitochondrial genetics Yeast Suppressiveness Triploid analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birky CW Jr, (1975) Mol Gen Genet 141:41–58Google Scholar
  2. Birky CW Jr., Demko CA, Perlman PS, Strauberg R (1978) Genetics 89:615–651Google Scholar
  3. Blanc H, Dujon B (1980) Proc Natl Acad Sci USA 77:3942–3946Google Scholar
  4. Blamire J, Michels CA, Walsh JM, Friedenberg DL (1976) Mol Gen Genet 143:253–259Google Scholar
  5. Burger G, Lang B, Backlaus B, Wolf K, Bandlow W, Kaudewitz F (1977) Mutations to drug resistance in the cob region of the mitochondrial genome. In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977. De Gruyter, Berlin, p 205Google Scholar
  6. Carnevali F, Morpugo G, Teece G (1969) Science 163:1331–1333Google Scholar
  7. Clark-Walker GD, Miklos GLG (1974) Genet Res 24:43–57Google Scholar
  8. Ephrussi B, de Margerie-Hottinguer H, Roman H (1955) Proc Natl Acad Sci USA 41:1065–1071Google Scholar
  9. Ephrussi B, Grandchamp S (1965) Heredity 20:1–7Google Scholar
  10. Ephrussi B, Jakob H, Grandchamp S (1966) Genetics 54:1–29Google Scholar
  11. Goursot R, de Zamaroczy M, Baldacci G, Bernardi G (1980) Curr Genet 1:173–176Google Scholar
  12. Gunge N (1975) Mol Gen Genet 139:189–202Google Scholar
  13. Haid A, Schweyen RJ, Bechmann H, Kaudewitz F, Solioz M, Schatz G (1979) Eur J Biochem 94:451–464Google Scholar
  14. Locker J, Lewin A, Rabinowitz M (1979) Plasmid 2:155–181Google Scholar
  15. Michaelis G, Petrochilo E, Slonimski PP (1973) Mol Gen Genet 123:51–63Google Scholar
  16. Michaelis G, Michel F, Lazowska J, Slonimski PP (1976) Mol Gen Genet 149:125–130Google Scholar
  17. Nagley P, Sriprakash KS, Linnane AW (1977) Adv Microb Physiol 16:157–277Google Scholar
  18. Ogur M, John RS, Nagai S (1957) Science 125:928–929Google Scholar
  19. Perlman PS, Birky CW Jr. (1974) Proc Natl Acad Sci USA 71:4612–4616Google Scholar
  20. Rank GH (1970) Can J Genet Cytol 12:340–346Google Scholar
  21. Shannon CA, Rao A, Douglass S, Criddle RS (1972) J Supramol Structure 1:145–152Google Scholar
  22. Slonimski PP, Lazowska J (1977) Transposable segments of mitochondrial DNA: A unitary hypothesis for the mechanism of mutation, recombination, sequence reiteration and suppressiveness of yeast ‘petite colony’ mutants. In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria De Gruyer, Berlin, p 39Google Scholar
  23. VanWinkle-Swift KP, Birky CW Jr. (1978) Mol Gen Genet 166:193–209Google Scholar
  24. Wickerham LJ (1946) J Bacteriol 52:293–301Google Scholar
  25. de Zamaroczy M, Baldacci G, Bernardi G (1979) FEBS Lett 108:429–432Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Elliot B. Gingold
    • 1
  1. 1.National Institute of Medical ResearchMill HillUK

Personalised recommendations