Skip to main content
Log in

Metabolite fluxes across the inner membrane of plant mitochondria — inhibition by phthalonic acid

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Transport and oxidation-reduction of citrate, 2-oxoglutarate and oxaloacetate by mitochondria isolated from thermogenic (Arum maculatum, Sauromatum guttatum spadices), green leaf (Pisum sativum) or etiolated (Phaseolus aureus, Helianthus tuberosus) plant tissues was found to be inhibited by phthalonic acid. No inhibition was found for NADH oxidation, glutamate, succinate or glycine transport and oxidation and malate transport. The much greater sensitivity of citrate oxidation to phthalonate inhibition compared with that of 2-oxoglutarate indicated that different carriers were involved, neither of which appeared to be rate-limiting for oxidation. Fluxes of oxaloacetate, and their sensitivity to phthalonate, indicated that this keto acid may use either the same carrier as 2-oxoglutarate or an oxaloacetate-specific carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PTA:

phthalonic acid

References

  • Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1–15

    Google Scholar 

  • Birnberg, P.R., Hanson, J.B. (1983) Mechanisms of citrate transport and exchange in corn mitochondria. Plant Physiol. 71, 803–809

    Google Scholar 

  • Birnberg, P.R., Jayroe, D.L., Hanson, J.B. (1982) Citrate transport in corn mitochondria. Plant Physiol. 70, 511–516

    Google Scholar 

  • Buu Hoi, Linche Kin. (1939) Structure et spectre d'absorption de l'acid phthalonique. C. R. Acad. Sci. Ser. D 209, 346–348

    Google Scholar 

  • Day, D.A., Hanson, J.B. (1977) Pyruvate and malate transport and oxidation in corn mitochondria. Plant Physiol. 59, 630–635

    Google Scholar 

  • Day, D.A., Wiskich, J.T. (1977) Glutamate transport by plant mitochondria. Plant Sci. Lett. 9, 33–36

    Google Scholar 

  • Day, D.A., Wiskich, J.T. (1980) Glycine transport by plant mitochondria. FEBS Lett. 112, 191–194

    Google Scholar 

  • Day, D.A., Wiskich, J.T. (1981a) Effect of phthalonic acid on respiration and metabolite transport in higher plant mitochondria. Arch. Biochem. Biophys. 211, 100–107

    Google Scholar 

  • Day, D.A., Wiskich, J.T. (1981b) Glycine metabolism and oxaloacetate transport by pea leaf mitochondria. Plant Physiol. 68, 425–429

    Google Scholar 

  • DeSantis, A., Borraccino, G., Arrigoni, O., Palmeiri, F. (1975) The mechanism of phosphate permeation in purified bean mitochondria. Plant Cell Physiol.16, 911–923

    Google Scholar 

  • DeSantis, A., Arrigoni, O., Palmieri, F. (1976) Carrier mediated transport of metabolites in purified bean mitochondria. Plant Cell Physiol. 17, 1221–1233

    Google Scholar 

  • Dixon, M. (1953) The determination of enzyme inhibitor constants. Biochem. J. 55, 170–171

    Google Scholar 

  • Estabrook, R.W. (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol. 10, 41–47

    Google Scholar 

  • Givan, C.V. (1980) Aminotransferases in higher plants. In: The biochemistry of plants, vol. 5: Amino acids and derivatives, pp. 329–358, Miflin, B.J., ed. Academic Press, London New York

    Google Scholar 

  • Halestrap, A.P. (1975) The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem. J. 148, 85–96

    Google Scholar 

  • Hampp, R. (1979) Kinetics of mitochondrial phosphate transport and rates of respiration and phosphorylation during greening of etiolated Avena leaves. Planta 144, 325–332

    Google Scholar 

  • Hanson, J.B., Miller, R.J. (1969) Active swelling in plant mitochondria. Plant Cell Physiol. 10, 491–494

    Google Scholar 

  • Journet, E.-P., Bonner Jr., W.D., Douce, R. (1982) Glutamate metabolism triggered by oxaloacetate in intact plant mitochondria. Arch. Biochem. Biophys. 214, 366–375

    Google Scholar 

  • LaNoue, K.F., Schoolwerth A.C. (1979) Metabolite transport in mitochondria. Annu. Rev. Biochem. 48, 871–922

    Google Scholar 

  • Meijer, A.J., Van Woerkom, G.M., Eggelte, T.A. (1976) Phthalonic acid, an inhibitor of α-oxoglutarate transport in mitochondria. Biochim. Biophys. Acta 430, 53–61

    Google Scholar 

  • Moore, A.L., Jackson, C., Dench, J., Morris, P., Hall, D.O. (1979) The relationship of glycine decarboxylase to the phosphorylation potential. Plant Physiol. [Suppl.] 63, 110

    Google Scholar 

  • Moore, A.L., Proudlove, M.O. (1983) Mitochondria and submitochondrial particles. In: Isolation of membranes and organelles from plant cells, pp. 153–184, Hall, J.L., Moore, A.L., eds. Academic Press, London New York

    Google Scholar 

  • Moore, A.L., Proudlove, M.O., Partis, M.D., Beechey, R.B. (1983) The effect of N-polyethylene-carboxymaleimides on glycine movement into pea leaf mitochondria. Proc. 6th Int. Congr. Photosyn., in press

  • Neuburger, M., Douce, R. (1980) Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria. Biochim. Biophys. Acta 589, 176–189

    Google Scholar 

  • Palmieri, F., Prezioso, G., Quagliariello, E., Klingenberg, M. (1971) Kinetic study of the dicarboxylate carrier in rat liver mitochondria. Eur. J. Biochem. 22, 66–74

    Google Scholar 

  • Passam, H.C., Souverijin, J.H.M., Kemp Jr., A. (1973) Adenine nucleotide translocation in Jerusalem-artichoke mitochondria. Biochim. Biophys. Acta 305, 88–94

    Google Scholar 

  • Passarella, S., Palmieri, F., Quagliariello, E. (1977) A single carrier to transport oxaloacetate into rat liver mitochondria. In: Bioenergetics of membranes, pp. 425–434, Packer, L., Papageorgiou, G.C., Trebst, A., eds. Elsevier/North Holland Biomedical Press, Amsterdam New York

    Google Scholar 

  • Passarella, S., Palmieri, F., Quagliarello, E. (1978) The transport of oxaloacetate in rat heart mitochondria. FEBS Lett. 90, 61–64

    Google Scholar 

  • Peterson, G.L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356

    Google Scholar 

  • Phillips, M.L., Williams, G.R. (1973) Effects of 2-butylmalonate, 2-phenylsuccinate, benzylmalonate and p-iodobenzylmalonate on the oxidation of substrates by mung bean mitochondria. Plant Physiol. 51, 225–228

    Google Scholar 

  • Proudlove, M.O., Moore, A.L. (1982) Movement of amino acids into isolated plant mitochondria. FEBS Lett. 147, 26–30

    Google Scholar 

  • Usuda, H., Arron, G.P., Edwards, G.E. (1980) Inhibition of glycine decarboxylation by aminoacetonitrile and its effect on photosynthesis in wheat. J. Exp. Bot. 31, 1477–1483

    Google Scholar 

  • von Braun, J., Braunsdorf, O., Engelbertz, P., Hahn, E., Hainmach, O., Kredel, W., Larbig, K. (1923) Uber Benzo-polymethylenverbindungen. X. Oxydativer Abbau von Tetralin und substituierten Tetralinen zu phthalonsauren und phthalsauren. Berichte 56, 2332–2343

    Google Scholar 

  • Walker, G.H., Sarojini, G., Oliver, D.J. (1982) Identification of a glycine transporter from pea leaf mitochondria. Biochem. Biophys. Res. Commun. 107, 856–861

    Google Scholar 

  • Wiskich, J.T. (1977) Mitochondrial metabolite transport. Annu. Rev. Plant Physiol. 28, 45–69

    Google Scholar 

  • Wiskich, J.T. (1980) Control of Krebs cycle. In: The biochemistry of plants, vol. 2: Metabolism and respiration, pp. 243–278, Davies, D.D., ed. Academic Press, New York London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proudlove, M.O., Moore, A.L. Metabolite fluxes across the inner membrane of plant mitochondria — inhibition by phthalonic acid. Planta 160, 407–414 (1984). https://doi.org/10.1007/BF00429756

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429756

Key words

Navigation