Archives of Microbiology

, Volume 114, Issue 1, pp 51–54 | Cite as

The effect of inorganic phosphate on cyanogenesis by Pseudomonas aeruginosa

  • R. Meganathan
  • P. A. Castric
Article

Abstract

The biosynthesis of hydrogen cyanide (HCN) by a strain of Pseudomonas aeruginosa is found to be significantly influenced by inorganic phosphate. Optimum HCN production occurs when the phosphate concentration is between 1 and 10 mM. Above and below this concentration the amount of HCN produced decreases sharply and at 0.1 and 100 mM phosphate low HCN production occurs. If a culture growing at 0.1 mM phosphate and producing low HCN is shifted to 10 mM phosphate, HCN biosynthesis resumes. Experiments with chloramphenicol indicate that de novo-protein synthesis is required for the process.

Key words

Hydrogen cyanide biosynthesis Pseudomonas aeruginosa Phosphate effect on HCN Secondary metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, W. N.: A new method for the estimation of micro quantities of cyanide and thiocyanate. Analyst 69, 262–265 (1944)Google Scholar
  2. Brysk, M. N., Lauinger, C., Ressler, C.: Biosynthesis of cyanide from (2-14C15N) glycine in Chromobacterium violaceum. Biochim. biophys. Acta (Amst.) 184, 583–588 (1969)Google Scholar
  3. Castric, P. A.: Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Canad. J. Microbiol. 21, 613–618 (1975)Google Scholar
  4. Demain, A. L., Inamine, E.: Biochemistry and regulation of streptomycin and mannosidostreptomycinase (α-d-mannosidase) formation. Bact. Rev. 34, 1–19 (1970)Google Scholar
  5. Hou, C. I., Gronlund, F., Campbell, J. J. R.: Influence of phosphate starvation on cultures of Pseudomonas aeruginosa. J. Bact. 92, 851–855 (1966)Google Scholar
  6. Hutchinson, S. A.: Biological activities of fungal metabolites. Ann. Rev. Phytopath. 11, 223–246 (1973)Google Scholar
  7. Lorck, H.: Production of hydrocyanic acid by bacteria. Physiol. Plant. 1, 142–146 (1948)Google Scholar
  8. Mann, M. B., Huang, P. C.: New chromatographic form of phenylalanine transfer ribonucleic acid from Escherichia coli growing exponentially in a low phosphate medium. J. Bact. 118, 209–212 (1974)Google Scholar
  9. Meganathan, R., Castric, P. A.: Effect of inorganic phosphate on hydrogen cyanide biosynthesis by Pseudomonas aeruginosa. Abstracts of the Ann. Soc. Microbiol., p. 141 (1976)Google Scholar
  10. Michaels, R., Corpe, W. A.: Cyanide formation by Chromobacterium violaceum. J. Bact. 89, 106–112 (1965)Google Scholar
  11. Miller, A. V., Walker, J. B.: Accumulation of streptomycin phosphate in cultures of streptomycin producers grown an a highphosphate medium. J. Bact. 104, 8–12 (1970)Google Scholar
  12. Patty, A. F.: The production of hydrocyanic acid by Bacillus pyocyaneus. J. infect. Dis. 29, 73–77 (1921)Google Scholar
  13. Robbers, J. E., Robertson, L. W., Hornemann, K. M., Jundra, A., Floss, H. G.: Physiological studies on ergot: further studies on the induction of alkaloid synthesis by Tryptophan and its inhibition by phosphate. J. Bact. 112, 791–796 (1972)Google Scholar
  14. Weinberg, E. D.: Secondary metabolism: Raison d'être. Persp. Biol. Med. 14, 565–577 (1971)Google Scholar
  15. Weinberg, E. D.: Secondary metabolism: Control by temperature and inorganic phosphate. Develop. Industr. Microbiol. 15, 70–81 (1974)Google Scholar
  16. Wissing, F.: Growth curves and pH optima for cyanide producing bacteria. Physiol. Plant. 21, 589–593 (1968)Google Scholar
  17. Wissing, F.: Cyanide production from glycine by a homogenate from a Pseudomonas species. J. Bact. 121, 695–699 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • R. Meganathan
    • 1
  • P. A. Castric
    • 1
  1. 1.Department of Biological SciencesDuquesne UniversityPittsburghUSA

Personalised recommendations