Archives of Microbiology

, Volume 114, Issue 1, pp 19–23 | Cite as

Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation

  • R. Jeanjean
  • E. Broda


Sulphate uptake by Anacystic nidulans under aerobic conditions in the light was found to be sensitive to metabolic poisons, such as N, N′-dicyclohexyl-carbodiimide and carbonyl cyanide m-chlorophenyl hydrazone. It was also depressed by darkness. The sulphate absorption is an energy-dependent process. Sulphate uptake was also inhibited by chromate and selenate.

Osmotic shock strongly affected sulphate uptake. This effect could be interpreted by a loss of a binding protein involved in the absorption of sulphate. Osmotic shock also depressed oxygen production in light and oxygen consumption in darkness; however, shocked cells were able to grow normally.

Sulphate uptake was strongly enhanced by sulphate starvation, but this enhancement was partly prevented by chloramphenicol. Apparently sulphate starvation depressed the synthesis of a carrier involved in the transport of sulphate. During sulphate starvation the membrane potential, measured by the uptake of triphenylmethylphosphonium, increases. This may be due to changes in the membrane.

Key words

Anacystis nidulans Sulphate uptake Osmotic shock Membrane potential Sulphate starvation 



adenosine 5′-triphosphate


carbonyl cyanide m-chlorophenyl hydrazone






ethylene-diamine tetraacetic acid


N-2-hydroxyethylpiperazine-N′-2-ethane sulfonic acid






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bornefeld, T., Simonis, W.: Correlations between phosphate uptake, photophosphorylation and metabolism in Anacystis nidulans as affected by carbonylcyanide m-chlorophenyl hydrazone and chloramphenicol. In: Proc. Intern. Congr. Photosynthesis (M. Avron, ed.), pp. 1557–1565. Amsterdam: Elsevier 1974Google Scholar
  2. Deane, E. M., O'Brien, R. W.: Sulphate uptake and metabolism in the Chrysomonad Monochrysis lutheri. Arch. Microbiol. 105, 295–301 (1975)Google Scholar
  3. Dewar, M. A., Barber, J.: Cation regulation in Anacystis nidulans. Planta (Berl.) 113, 143–155 (1973)Google Scholar
  4. Dewar, M. A., Barber, J.: Chloride uptake in Anacystis nidulans. Planta (Berl.) 117, 163–172 (1974)Google Scholar
  5. Dreyfuss, J.: Characterization of a sulfate and thiosulfate transporting system in Salmonella typhimurium. J. biol. Chem. 239, 2292–2297 (1964)Google Scholar
  6. Grodzinski, B., Colman, B.:The effect of osmotic stress on the oxydation of glycolate by the blue-green alga Anacystis nidulans. Planta (Berl.) 124, 123–133 (1975)Google Scholar
  7. Harold, F. M., Papineau, D.: Cation transport and the electrogenesis by Streptococcus faecalis. I. The membrane potential. J. Membrane Biol. 8, 27–44 (1972)Google Scholar
  8. Jeanjean, R.: The relationship between the rate of phosphate absorption and protein synthesis during phosphate starvation in Chlorella pyrenoidosa. FEBS Letters 32, 149–151 (1973)Google Scholar
  9. Jeanjean, R.: Phosphate uptake in Chlorella pyrenoidosa. II. Effect of pH and of SH reagents Biochimie 57, 1229–1236 (1975)Google Scholar
  10. Lowendorf, H. S., Bazinet, G. F., Slayman, C. W.: Phosphate transport in Neurospora. Derepression of a high affinity transport system during phosphorus starvation. Biochim. biophys. Acta (Amst.) 389, 541–549 (1975)Google Scholar
  11. Marzluf, G. A.: Genetic and metabolic controls for sulfate metabolism in Neurospora crassa. Isolation and study of chromate resistant and sulfate transport negative mutants. J. Bact. 102, 716–721 (1970).Google Scholar
  12. McCready R.G.L., Din, G.A.: Active sulfate transport in Saccharomyces cerivisiae. FEBS Letters 38, 361–363 (1974)Google Scholar
  13. Medvezcki, N., Rosenberg, H.: The phosphate binding protein of Escherichia coli. Biochim. biophys. Acta (Amst.) 211, 158–168 (1970)Google Scholar
  14. Neu, H. C. Heppel, L. A.: The release of enzyme from Escherichia coli by osmotic shock and during formation of spheroplasts. J. biol. Chem. 240, 3685–3692 (1965)Google Scholar
  15. Pardee, A. B.: Crystallization of a sulfate binding protein (permease) from Salmonella typhimurium. Science 156, 1627–1628 (1967)Google Scholar
  16. Pardee, A. B., Prestidge, L. S., Whipple, M. B., Dreyfuss, J.: A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium. J. biol. Chem. 241, 3962–3969 (1966)Google Scholar
  17. Passera, C., Ferrari, G.: Sulphate uptake in two mutants of Chlorella vulgaris with high and low sulphur amino-acid content. Physiol. Plant. 35, 318–321 (1975)Google Scholar
  18. Peschek, G. A.: Die bioenergetischen Prozesse der Blaualge Anacystis nidulans. Dissertation, Universität Wien (1975)Google Scholar
  19. Robinson, J. B.: Sulphate influx in Characean cells. I. General Characteristics. J. exp. Bot. 20, 201–220 (1969)Google Scholar
  20. Simonis, W., Bornefeld, T., Lee-Kadem, J., Madjumdar, K.: Phosphate uptake and phosphorylation in the blue-green alga Ana cystis nidulans. In: Membrane transport in plants (U. Zimmerman, J. Dainty, eds.), pp. 220–225. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  21. Smith, I. K.: Sulfate transport in cultured tabacco cells. Plant Physiol. 55, 303–307 (1975)Google Scholar
  22. Vallée, M., Jeanjean, R.: Le système de transport de SO42− chez Chlorella pyrenoidosa et sa regulation. I. Etude cinétique de la perméation. Biochim. biophys. Acta (Amst.) 150, 599–606 (1968)Google Scholar
  23. Yamamoto, L. A., Segel, I. H.: The inorganic sulfate transport system of Penicillium chrysogenum. Arch. Biochem. Biophys. 114, 523–538 (1966)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • R. Jeanjean
    • 1
  • E. Broda
    • 1
  1. 1.Radiochemical Department, Institute of Physical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations