Advertisement

Archives of Microbiology

, Volume 134, Issue 1, pp 23–27 | Cite as

Distribution of plastocyanin and soluble plastidic cytochrome c in various classes of algae

  • Gerhard Sandmann
  • Hildegard Reck
  • Erich Kessler
  • Peter Böger
Original Papers

Abstract

Several eukaryotic algae belonging to the main taxonomic classes have been cultured autotrophically in liquid medium supplemented with or depleted of copper to assay their ability to form plastocyanin or exchange it against plastidic cytochrome c-553. Most Chlorophyceae are able to substitute cytochrome c-533 for plastocyanin with some exceptions like Haematococcus or Dunaliella, which can only synthesize plastocyanin. Also within the Chlorella group, about half of the 28 strains assayed cannot synthesize cytochrome c-553 under copper deficiency. Species of Chrysophyceae, Xanthophyceae, and Rhodophyceae, on the other hand, cannot synthesize plastocyanin even when a comparatively high copper concentration (10μM) is available.

Serological cross-reactions of various plastocyanincontaining Chlorella homogenates against an antibody towards Scenedesmus plastocyanin exhibit a pattern which cannot be taxonomically used at the moment.

Including previous data on blue-green algae, it appears that, in the course of evolution, cytochrome c-553 dominates in the older species. In the Chlorophyceae, it is mutually exchangeable against plastocyanin which becomes the only electron donor to P700 in higher plants.

Key words

Plastocyanin Cytochrome exchange Algal taxonomy Chlorella 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baszyński T, Ruszkowkska M, Król M, Tukendorf A, Wolińska D (1978) The effect of copper deficiency on the photosynthetic apparatus of higher plants. Z Pflanzenphysiol 89:207–216Google Scholar
  2. Böhme H (1978) Reactions of antibodies against ferredoxin, ferredoxin-NADP+ reductase, and plastocyanin with spinach chloroplasts. Eur J Biochem 84:87–93Google Scholar
  3. Bohner H, Böger P (1978) Reciprocal formation of cytochrome c-553 and plastocyanin in Scenedesmus. FEBS Lett 85:337–339Google Scholar
  4. Bohner H, Merkle H, Kroneck P, Böger P (1980) High variability of the electron carrier plastocyanin in microalgae. Eur J Biochem 105:603–609Google Scholar
  5. Crofts AR, Wood PN (1978) Photosynthetic electron transport chains of plants and bacteria and their role as proton pumps. In: Sanadi DR, Vernon LP (eds) Current topics in bioenergic, vol 7. Academic Press, New York San Francisco London, pp 175–224Google Scholar
  6. Ehami J, Fukuda J (1975) Mechanisms of the acido- and thermophily of Cyanidium caldarium Geitler. I. Effects of temperature, pH and light intensity on the photosynthetic oxygen evolution of intact and treated cells. Plant Cell Physiol 16:211–220Google Scholar
  7. Fott B, Lochhead R, Clémençon H (1975) Taxonomie der Arten Chlorella ultrasquamata Clém. et Fott and Chlorella fusca Shih. et Krauss. Arch Protistenk 117:288–296Google Scholar
  8. Hegewald E, Schnepf E (1979) Geschichte und Stand der Systematik der Grünalgengattung Scenedesmus. Schweiz Z Hydrobiol 40:320–343Google Scholar
  9. Hoogenhout H, Amesz J (1965) Growth rates of photosynthetic microorganisms in laboratory cultures. Arch Mikrobiol 50:10–25Google Scholar
  10. Kerfin W, Kessler E (1978) Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XI. DNA hybridization. Arch Microbiol 116:97–103Google Scholar
  11. Kessler E (1976) Comparative physiology, biochemistry, and the taxonomy of Chlorella (Chlorophyceae). Plant Syst Evol 125:129–138Google Scholar
  12. Kessler E (1978) Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XII. Starch hydrolysis and a key for the identification of 13 species. Arch Microbiol 119:13–16Google Scholar
  13. Kessler E (1982) Chemotaxonomy in the Chlorococcales. In: Round FE, Chapman DJ (eds) Progress in physiological research, vol. I. Elsevier Biomedical Press, Amsterdam New York Oxford, pp 111–135Google Scholar
  14. Kessler E, Czygan FC (1970) Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. IV. Verwertung organischer Stickstoffverbindungen. Arch Microbiol 70:211–216Google Scholar
  15. Kessler E, Zweier I (1971) Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. V. Die auxotrophen und mesotrophen Arten. Arch Microbiol 79:44–48Google Scholar
  16. Kümmel H, Kessler E (1980) Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XIII. Serological studies. Arch Microbiol 126:15–19Google Scholar
  17. Kunert KJ, Böger P (1975) Absence of plastocyanin in the alga Bumilleriopsis filiformis and its replacement by cytochrome c-553. Z Naturforsch 30c:190–200Google Scholar
  18. Sandmann G, Böger P (1980a) Physiological factors determining formation of plastocyanin and cytochrome c-553 in Scenedesmus. Planta (Berlin) 147:330–334Google Scholar
  19. Sandmann G, Böger P (1980b) Copper-induced exchange of plastocyanin and cytochrome c-553 in cultures of Anabaena variabilis and Plectonema boryanum. Plant Sci Lett 17:417–424Google Scholar
  20. Sandmann G, Böger P (1981a) Plastocyanin and cytochrome c-553, two different electron donors to photosystem I in algae. In: Akoyunoglou G (ed) Proc 5th Int Congr Photosynthesis, vol II. Balaban International Science Services, Philadelphia, pp 623–632Google Scholar
  21. Sandmann G, Böger P (1981b) Influence of light on plastocyanin formation in the alga Scenedesmus acutus. Photosynth Res 2:281–289Google Scholar
  22. Sandmann G, Böger P (1983) The enzymological function of heavy metals and their role in electron transfer processes of plants. In: Läuchli A, Bielesky RL (eds) Encyclopedia of plant physiology: Inorganic plant nutrition, vol 12. Springer, Berlin Heidelberg New York (in press)Google Scholar
  23. Starr RC (1978) The Culture Collection of Algae at the University of Texas at Austin. J Phycol 14:47–100Google Scholar
  24. Visser JWM, Amesz J, van Gelder BF (1974) EPR signals of oxidized plastocyanin in intact algae. Biochim Biophys Acta 333:279–287Google Scholar
  25. Wildner FG, Hauska G (1974) Localization of the reaction site of cytochrome c-553 in chloroplasts from Euglena gracilis. Arch Biochem Biophys 164:127–135Google Scholar
  26. Wood PM (1978) Interchangeable copper and iron proteins in algal photosynthesis. Eur J Biochem 87:9–19Google Scholar
  27. Yoshizaki F, Sugimura Y, Shimokoriyama M (1981) Purification, crystallization, and properties of plastocyanin from a green alga, Enteromorpha prolifera. J Biochem 89:1533–1539Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Gerhard Sandmann
    • 1
  • Hildegard Reck
    • 1
  • Erich Kessler
    • 2
  • Peter Böger
    • 1
  1. 1.Lehrstuhl für Physiologie und Biochemie der PflanzenUniversität KonstanzKonstanzFederal Republic of Germany
  2. 2.Institut für Botanik and Pharmazeutische BiologieUniversität ErlangenErlangenFederal Republic of Germany

Personalised recommendations