Skip to main content
Log in

Sulfite formation by wine yeasts

V. Regulation of biosynthesis of ATP- and ADP-sulfurylase by sulfur- and selenium-compounds

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Four strains of Saccharomyces cerevisiae and Saccharomyces bayanus differing in their ability to produce sulfite from sulfate were studied with respect to their in vivo regulation of adenosine 5′-triphosphate-sulfurylase and adenosine 5′-diphosphate sulfurylase by various sulfur compounds and by selenite. High sulfite-producing strains showed a modified repression of ATP-sulfurylase as compared with low sulfite-producing strains. ADP-sulfurylase did neither show regulation by sulfurintermediates in high nor in low sulfite-producing strains.

A stoichiometrical reduction of selenite to elemental selenium was found in the presence of sulfate or L-methionine as sole sulfur source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APS:

adenosine-5′-phosphosulfate

Pi :

inorganic phosphate

References

  • Adams, C. A., Nicholas, D. J. D.: Adenosine 5′-pyrophosphate sulphurylase in baker's yeast. Biochem. J. 128, 647–654 (1972)

    Google Scholar 

  • Anderson, R. J.: The metabolism of sulphur compounds by strains of Saccharomyces cerevisiae and Saccharomyces carlsbergensis. M. Sci. Thesis, Univ. Birmingham (1970)

  • Andreasen, A. A., Stier, T. J. B.: Anaerobic nutrition of Sacharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J. Cell. Comp. Physiol. 1, 23–36 (1953)

    Google Scholar 

  • Bonish, P., Eschenbruch, R.: Sulphite reductase and ATP sulfurylase in low- and high-sulphite forming wine yeasts: Relationship to sulphite accumulation during fermentation. Arch. Microbiol. 109, 85–88 (1976)

    Google Scholar 

  • Breton, A., Surdin-Kerjan, Y.: Sulfate uptake in Saccharomyces cerevisiae: Biochemical and genetic study. J. Bacteriol. 132, 224–232 (1977)

    Google Scholar 

  • Burnell, J. N., Anderson, J. W.: Adenosine diphosphate sulphurylase activity in leaf tissue. Biochem. J. 133, 417–428 (1973)

    Google Scholar 

  • Cleland, W. W.: Dithiotreitol, a new protective reagent for SH-groups. Biochemistry 3, 480–481 (1964)

    Google Scholar 

  • Cohen, G. N., Cowie, D. B.: Remplacement total de la méthionine par le sélénométhionine das les proteins d'Escherichia coli. Compt. Rend. Acad. Sci. Paris. 244, 680–683 (1957)

    Google Scholar 

  • Colombani, F., Cherest, H., de Robichon-Szulmajster, H.: Biochemical and regulatory effects of methionine analogues in Saccharomyces cerevisiae. J. Bacteriol. 122, 375–384 (1975)

    Google Scholar 

  • Cowie, D. B., Cohen, G. N.: Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim. Biophys. Acta 26, 252–261 (1957)

    Google Scholar 

  • Dilworth, G. L., Bandurski, R. S.: Activation of selenate by adenosine 5′-triphosphate sulphurylase from Saccharomyces cerevisiae. Biochem. J. 163, 521–529 (1977)

    Google Scholar 

  • Dott, W., Heinzel, M., Trüper, H. G.: Sulfite formation by wine yeasts. I. Relationship between growth, fermentation and sulfite formation. Arch. Microbiol. 107, 289–292 (1976)

    Google Scholar 

  • Dott, W., Heinzel, M., Trüper, H. G.: Sulfite formation by wine yeasts. IV. Active uptake of sulfate by ‘low’ and ‘high’ sulfite producing wine yeasts. Arch. Microbiol. 112, 283–285 (1977)

    Google Scholar 

  • Dott, W., Trüper, H. G.: Sulfite formation by wine yeasts. III. Properties of sulfite reductase. Arch. Microbiol. 108, 99–104 (1976)

    Google Scholar 

  • Dott, W., Trüper, H. G.: Sulfite formation by wine yeasts. VI. Regulation of biosynthesis of NADPH- and BV-dependent sulfite reductases. Arch. Microbiol. 118, 249–251 (1978)

    Google Scholar 

  • Eschenbruch, R.: Der Einfluß von Methionine und Cysteine auf die SO2-Bildung einiger Stämme von Saccharomyces cerevisiae bei der Vergärung von Traubenmost. Vitis 11, 53–57 (1972a)

    Google Scholar 

  • Eschenbruch, R.: Sulphate uptake and sulphite formation related to the methionine and/or cysteine content of grape must during the fermentation by strains of Saccharomyces cerevisiae. Vitis 11, 222–227 (1972b)

    Google Scholar 

  • Eschenbruch, R., Bonish, P.: Production of sulphite and sulphide by low- and high-sulphite forming wine yeasts. Arch. Microbiol. 107, 299–302 (1976)

    Google Scholar 

  • Eschenbruch, R., Haasbroek, F. J., de Villiers, J. F.: On the metabolism of sulphate and sulphite during the fermentation of grape must by Saccharomyces cerevisiae. Arch. Mikrobiol. 93, 259–266 (1973)

    Google Scholar 

  • Heinzel, M., Dott, W., Trüper, H. G.: Störungen im Schwefelstoffwechsel als Ursache der SO2-Bildung durch Weinhefen. Wein-Wiss. 31, 275–286 (1976)

    Google Scholar 

  • Heinzel, M., Trüper, H. G.: Sulfite formation by wine yeasts. II. Properties of ATP-sulfurylase. Arch. Microbiol. 107, 293–297 (1976)

    Google Scholar 

  • Hsieh, H. S., Ganther, H. E.: Acid-volatile selenium formation catalyzed by glutathione reductase. Biochemistry 14, 1632–1636 (1975)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol Chem. 193, 265–275 (1951)

    Google Scholar 

  • McConnell, K. P., Hoffman, J. L.: Methionine-selenomethionine parallels in Escherichia coli polypeptide chain initiation and synthesis. Proc. Soc. Exptl. Biol. Med. 140, 638–641 (1972)

    Google Scholar 

  • McConnell, K. P., Hoffman, J. L.: Methionine-selenomethionine parallels in rat liver polypeptide chain sythesis. FEBS-Lett 24, 60–62 (1972)

    Google Scholar 

  • McCready, R. G. L., Campbell, J. N., Payne, J. I.: Selenite reduction by Salmonella heidelberg. Can. J. Microbiol. 12, 703–714 (1966)

    Google Scholar 

  • McCready, R. G. L., Din, G. A.: Active sulfate transport in Saccharomyces cerevisiae. FEBS-Lett 38, 361–363 (1974)

    Google Scholar 

  • McKillen, M. N., Spencer, B.: Molybdate toxicity in Salmonella typhimurium. Biochem. J. 118, 27p. (1970)

    Google Scholar 

  • Mudd, S. H., Cantoni, G. L.: Selenomethionine in enzymatic transmethylations. Nature 180, 1052 (1957)

    Google Scholar 

  • Nicholls, R. G.: Kinetic studies on purified ADP sulphurylase from baker's yeast. Proc. Austral. Biochem. Soc. 10, 15 (1977a)

    Google Scholar 

  • Nicholls, R. G.: Purification and steady-state kinetics of adenosine 5′-pyrophosphate sulfurylase from baker's yeast. Biochem. J. 165, 149–155 (1977b)

    Google Scholar 

  • Okuda, S., Uemura, T.: Sulphite reductase of yeast in relation to pantothenic acid deficiency. Biochim. Biophys. Acta 97, 154–156 (1965)

    Google Scholar 

  • Peck, H. D. Jr.: Adnosine 5′-phosphosulfate as an intermediate in the oxidation of thiosulfate by Thiobacillus thioparus. Proc. Nat. Acad. Sci. U.S. 46, 1053–1057 (1960)

    Google Scholar 

  • Peck, H. D. Jr.: Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol. Rev. 26, 67–94 (1962)

    Google Scholar 

  • Peck, H. D., Jr.: Sulfation linked to ATP-cleavage. In: The enzymes (P. D. Boyer, ed.), 3rd ed., Vol. X, pp. 651–669. New York-London: Academic Press 1974

    Google Scholar 

  • Robbins, P. W., Lipmann, F.: Separation of the two enzymatic phases in active-sulfate sythesis. J. Biol. Chem. 233, 681–685 (1958)

    Google Scholar 

  • Shrift, A.: Biochemical inter-relations between selenium and sulfur in plants and microorganisms. Fed. Proc. 20, 695–702 (1961)

    Google Scholar 

  • Stickland, L. H.: The determination of small quantities of bacteria by means of the biuret reaction. J. Gen. Microbiol. 5, 698–703 (1951)

    Google Scholar 

  • Surdin-Kerjan, Y., Cherest, H., de Robichon-Szulmajster, H.: Regulation of methionine biosynthesis in Saccharomyces cerevisiae operates through independent signals: Methionyl-t RNAmet and S-adenosylmethionine. Acta Microbiol. Acad. Sci. Hung. 23, 109–120 (1976)

    Google Scholar 

  • Taussky, H. H., Shorr, E.: A microcolorimetric method for the determination of inorganic phosphorus. J. Biol. Chem. 202, 675–685 (1953)

    Google Scholar 

  • Thiele, H. H.: Wachstumsphysiologische Untersuchungen an Thiorhodaceae; Wasserstoffdonatoren und Sulfatreduktion. Diss., Univ. Göttingen (1966)

  • Thiele, H. H.: Sulfur metabolism in Thiorhodaceae: V. Enzymes of sulfur metabolism in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek. J. Microbiol. Serol. 34, 350–356 (1968)

    Google Scholar 

  • Tilton, R. C., Gunner, H. B., Litsky, W.: A quantitative assay of residual selenite in bacteriological media. Analyt. Biochem. 13, 362–365 (1965)

    Google Scholar 

  • Trüper, H. G., Rogers, L. A.: Purification and properties of adenylyl sulfate reductase from the phototrophic bacterium, Thiocapsa roseopersicina. J. Bacteriol. 108, 1112–1121 (1971)

    Google Scholar 

  • Tweedie, I. W., Segel, I. H.: Specificity of transport processes for sulfur, selenium and molybdenum anions by filamentous fungi. Biochim. Biophys. Acta 196, 95–106 (1970)

    Google Scholar 

  • Wainwright, T.: Hydrogen sulphide production by yeast under conditions of methionine, pantophenate of vitamin B6 deficiency. J. Gen. Microbiol. 61, 107–119 (1970)

    Google Scholar 

  • Wiberley, S. E., Basset, L. G., Burrill, A. M., Lyng, H.: Spectrophotometric determination of selenium and tellurium in concentrated sulfuric acid. Analyt. Chem. 25, 1586–1588 (1953)

    Google Scholar 

  • Wilson, L. G., Bandurski, R. S.: Enzymatic reactions involving sulfate, sulfite, selenate and molybdate. J. Biol. Chem. 233, 975–981 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinzel, M.A., Trüper, H.G. Sulfite formation by wine yeasts. Arch. Microbiol. 118, 243–247 (1978). https://doi.org/10.1007/BF00429112

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429112

Key words

Navigation