, Volume 44, Issue 3, pp 297–300 | Cite as

Behavioral supersensitivity to 5-hydroxytryptophan induced by chronic methysergide pretreatment

  • Harold L. Klawans
  • D. J. D'Amico
  • B. C. Patel
Short Reports Animal Studies


The administration of 5-hydroxytryptophan to intact guinea pigs results in rhythmic myoclonic behavior. This behavior is blocked acutely by methysergide, but is intensified in animals chronically pretreated with methysergide. Brain serotonin concentrations of guinea pigs pretreated with methysergide did not differ from saline-treated animals. These results are compatible with the hypothesis that prolonged methysergide administration can result in pharmacologically-induced denervation hypersensitivity at central serotonin receptors.

Key words

Methysergide Denervation supersensitivity Serotonin 5-Hydroxytryptophan-induced myoclonic behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andén, N. E., Corrodi, H., Fuxe, K., Hökfelt, T.: Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Brit. J. Pharmacol. 34, 1–7 (1968)Google Scholar
  2. Clineschmidt, B. U., Anderson, E. G.: The blockade of bulbospinal inhibition by 5-hydroxytryptamine antagonists. Exp. Brain Res. 11, 175–186 (1970)Google Scholar
  3. Costall, B., Naylor, R. J.: On the mode of action of apomorphine. Europ. J. Pharmacol. 21, 350–361 (1973)Google Scholar
  4. Dewhurst, W. G., Marley, E.: Action of sympathomimetic and allied amines on the central nervous system of the chicken. Brit. J. Pharmacol. 25, 705–727 (1965)Google Scholar
  5. Ernst, A. M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berl.) 10, 316–323 (1967)Google Scholar
  6. Fuller, R. W., Perry, K. W.: Methiothepin elevation of 5-hydroxyindoleacetic acid levels in various anatomic regions of rat brain. Brain Res. 70, 369–371 (1974)Google Scholar
  7. Goetz, C., Klawans, H. L.: Studies on the interaction of reserpine, d-amphetamine, apomorphine, and 5-hydroxytryptophan. Acta pharmacol. (Kbh.) 34, 119–130 (1974)Google Scholar
  8. Jonas, W., Scheel-Krüger, J.: Amphetamine-induced stereotyped behavior correlates with the accumulation of O-methyl-dopamine. Arch. int. Pharmacodyn. 177, 379–386 (1969)Google Scholar
  9. KÄrjÄ, J., KÄrki, N. T., Tala, E.: Inhibition of methysergide or 5-hydroxytryptophan toxicity to mice. Acta pharmacol. (Kbh.) 18, 255–262 (1961)Google Scholar
  10. Klawans, H. L., Rubovits, R.: An experimental model of tardive dyskinesia. J. Neural Trans. 33, 235–246 (1972)Google Scholar
  11. Klawans, H. L., Goetz, C., Westheimer, R., Weiner, W. J.: 5-Hydroxytryptophan-induced behavior in intact guinea pigs. Res. Commun. Chem. Path. Pharmacol. 5, 555–559 (1973a)Google Scholar
  12. Klawans, H. L., Goetz, C., Weiner, W. J.: 5-Hydroxytryptophan-induced myoclonus in guinea pigs and the possible role of serotonin in infantile myoclonus. Neurology (Minneap.) 23, 1234–1240 (1973b)Google Scholar
  13. Lovenberg, W., Engelman, K.: Assay of serotonin, related metabolites, and enzymes. In: Methods of biochemical analysis, Suppl. Vol. 71, D. Glick, ed., pp. 1–34. New. York: Interscience Publishers 1971Google Scholar
  14. Monachon, M.-A., Burkard, W. P., Jalfre, M., Haefely, W.: Blockade of central 5-hydroxytryptamine receptors by methiothepin. Naunyn-Schmiedeberg's Arch. Pharmacol. 274, 192–197 (1972)Google Scholar
  15. Nerebski, J., Romanowski, W., Kadjiela, W.: The influence of l-methyl-d-lysergic butanolamide (Deseril) on EEG changes in rabbits caused by 5-hydroxytryptamine. Acta physiol. pol. 14, 157–170 (1963)Google Scholar
  16. Nyback, H., Sedvall, G.: Regional accumulation of catecholamines formed from tyrosine C14 in rat brain: Effect of chlorpromazine. Europ. J. Pharmacol. 5, 245–252 (1969)Google Scholar
  17. Ohye, C., Bouchard, R., Boucher, R., Poirier, L. J.: Spontaneous activity of the putamen after chronic interruption of the dopaminergic pathway: Effect of l-Dopa. J. Pharmacol. exp. Ther. 175, 700–708 (1970)Google Scholar
  18. Oswald, I., Ashcroft, G. W., Berger, R. J.: Some experiments on the chemistry of normal sleep. Brit. J. Psychiat. 112, 391–399 (1966)Google Scholar
  19. Quinton, R. M., Halliwell, G.: Effects of α-methyldopa and dopa on amphetamine excitatory response in reserpinized rats. Nature (Lond.) 200, 178–179 (1963)Google Scholar
  20. Randrup, A., Munkvad, I.: Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacologia (Berl.) 11, 300–310 (1967)Google Scholar
  21. Tarsy, D., Baldessarini, R. J.: Pharmacologically-induced behavioral supersensitivity to apomorphine. Nature (New Biol.) 245, 262–263 (1973)Google Scholar
  22. Tarsy, D., Baldessarini, R. J.: Behavioral supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacology 13, 927–940 (1974)Google Scholar
  23. Ungerstedt, U.: Postsynaptic supersensitivity after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine system. Acta physiol. scand. (Suppl.) 367, 69–93 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Harold L. Klawans
    • 1
  • D. J. D'Amico
    • 2
  • B. C. Patel
    • 3
  1. 1.Division of Neurology, Michael Reese Hospital and Medical Center and Department of MedicineUniversity of Chicago, Pritzker School of MedicineChicago
  2. 2.Abraham Lincoln School of MedicineUniversity of IllinoisChicago
  3. 3.Division of NeurologyMichael Reese Hospital and Medical CenterChicago

Personalised recommendations