Skip to main content
Log in

Regulation of the synthesis of adenylate cyclase in Escherichia coli by the cAMP — cAMP receptor protein complex

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The synthesis of the adenylate cyclase [ATP pyrophosphatelyase-(cyclizing), E.C. 4.6.1.1.] of Escherichia coli, appears to be regulated negatively by the cAMP receptor protein CRP. This conclusion is based on a comparison of adenylate cyclase activities measured in vitro with the rates of cAMP synthesis by intact bacteria. The activity of adenylate cyclase, depending on conditions of growth, is also regulated by CRP; this effect, however, is indirect insofar as it is mediated by a protein or proteins under CRP control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Botsford JL, Drexler M (1978) The cyclic 3′, 5′ adenosine monophosphate synthesis in E. coli. Mol Gen Genet 165:47–56

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Buettner MJ, Spitz E, Rickenberg HV (1973) Cyclic adenosine 3′, 5′ monophosphate in Escherichia coli. J. Bacteriol 114:1068–1073

    Google Scholar 

  • Cailla HL, Racine-Weisbuch MS, Delaage M (1973) Adenosine 3′, 5′ cyclic monophosphate assay at 10-15 mole level. Anal Biochem 56:394–407

    Google Scholar 

  • Cerdá-Olmedo EP, Hanawalt PC, Guerola N (1968) Mutagenesis of the replication point by nitrosoguanidine: map and pattern of replication of the Escherichia coli chromosome. J Mol Biol 33:705–719

    Google Scholar 

  • Epstein WL, Rotman-Denes LB, Hesse J (1975) Adenosine 3′:5′-cyclic monophosphate as mediator of catabolite repression in Escherichia coli. Proc. Natl Acad Sci USA 72:2300–2304

    Google Scholar 

  • Fraser ADE, Yamazaki H (1978) Construction of an Escherichia coli strain which excretes abnormally large amounts of adenosine 3′, 5′ cyclic monophosphate. Can J Microbiol 24:1423–1425

    Google Scholar 

  • Fraser ADE, Yamazaki H (1978a) Determination of the rates of synthesis and degradation of adenosine 3′, 5′-cyclic monophosphate in Escherichia coli CRP- and CRP+ strains. Can J Biochem 56:849–852

    Google Scholar 

  • Harwood JP, Peterkofsky A (1975) Glucose-sensitive adenylate cyclase in toluene-treated cells of Escherichia coli. B J Biol Chem 250:4656–4662

    Google Scholar 

  • Janeček J, Náprstek Z, Dobrová M, Jirešová M, Spiček J (1979) Adenylate cyclase activity in Escherichia coli cultured under various conditions. FEMS Microbiol Lett 6:305–307

    Google Scholar 

  • Leichtling BH, Su YF, Wimalasena J, Kendall H, Wolfe BB, Wicks WD (1978) Studies of cAMP metabolism in cultured hepatoma cells: low cAMP content and lack of hormonal responsiveness. J Cell Physiol 96:215–224

    Google Scholar 

  • Low B (1972) Escherichia coli K12 F-prime factors, old and new. Bacteriol Rev 36:587–607

    Google Scholar 

  • Mallick U, Herrlich P (1979) Regulation of synthesis of a major outer membrane protein: cAMP represses E. coli protein III synthesis. Proc Natl Acad Sci USA 76:5520–5523

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 201–205

    Google Scholar 

  • Monod J, Cohen-Bazire G, Cohn M (1951) Sur la biosynthèse de la β-palactosidase (lactase) chez Escherichia coli; la spécificité de linduction. Biochem Biophys Acta 7:585–599

    Google Scholar 

  • Nielsen LD, Monard D, Rickenberg HV (1973) Cyclic 3′, 5′-adenosine monophosphate phosphodiesterase of Escherichia coli. J Bacteriol 116:857–866

    Google Scholar 

  • Fastan I, Adya S (1976) Cyclic adenosine 5′-monophosphate in Escherichia coli. Bacteriol Rev 40:527–551

    Google Scholar 

  • Perlman R, Chen B, de Crombrugghe B, Emmer M, Gottesman M, Varmus H, Pastan I (1970) The regulation of lac operon transcription by cyclic adenosine 3′- 5′-monophosphate. Cold Spring Harbor Symp. Quant Biol 35:419–429

    Google Scholar 

  • Peterkofsky A (1976) Cyclic nucleotides in Bacteria. Adv Cyclic Nucleotide Res 7:3–47

    Google Scholar 

  • Peterkofsky A, Gazdar C (1974) Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B Proc Natl Acad Sce USA 71:2324–2328

    Google Scholar 

  • Peterkofsky A, Gazdar C (1979) Escherichia coli adenylate cyclase complex: Regulation by the proton electrochemical gradient. Proc Natl Acad Sci USA 76:1099–1103

    Google Scholar 

  • Potter K, Chaloner-Larsson G, Yamazaki H (1974) Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein. Biochem Biophys Res Commun 48:169–174

    Google Scholar 

  • Prusiner S, Miller RE, Valentine RC (1972) Adenosine 3′: 5′-cyclic monophosphate control of the enzymes of glutamine metabolism in Escherichia coli. Proc Natl Acad Sci USA 69:2922–2926

    Google Scholar 

  • Rephaeli AW, Saier Jr MH (1976) Effects of crp mutations on adenosine 3′, 5′-monophosphate metabolism in Salmonella typhimurium. J Bacteriol 127:120–127

    Google Scholar 

  • Rickenberg HV (1974) Cyclic AMP in prokaryotes. Ann u Rev Microbiol 28:353–369

    Google Scholar 

  • Sabourin D, Beckwith J (1975) Deletion of the Escherichia coli crp gene. J Bacteriol 122:338–340

    Google Scholar 

  • Saier MH Jr (1977) Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional and evolutionary interrelationships. Bacteriol Rev 41:856–871

    Google Scholar 

  • Saier MH Jr, Feucht BU, Hofstadter L (1976) Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the Enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. J Biol Chem 251:883–892

    Google Scholar 

  • Salomon Y, Londos C, Rodbell M (1974) A high sensitivity adenylate cyclase assay. Anal Biochem 58:541–548

    Google Scholar 

  • Taniguchi T, O'Neill M, de Cromrugghe B (1979) Interaction site of Escherichia coli cyclic AMP receptor protein on DNA of galactose operon promoters. Proc Natl Acad Sci USA 76:5090–5094

    Google Scholar 

  • Tao M, Lipmann F (1969) Isolation of adenyl cyclase form Escherichia coli. Proc Natl Acad Sci 63:86–92

    Google Scholar 

  • Tao M, Huberman A (1970) Some properties of Escherichia coli adenyl cyclase. Arch Biochem Biophys 141:236–240

    Google Scholar 

  • Wayne PK, Rosen OM (1971) Cyclic 3′:5′-adenosine monophosphate in Escherichia coli during transient and catabolite repression. Proc Natl Acad Sci USA 71:1436–1440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Bautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majerfeld, I.H., Miller, D., Spitz, E. et al. Regulation of the synthesis of adenylate cyclase in Escherichia coli by the cAMP — cAMP receptor protein complex. Molec. Gen. Genet. 181, 470–475 (1981). https://doi.org/10.1007/BF00428738

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428738

Keywords

Navigation