Marine Biology

, Volume 93, Issue 1, pp 49–58 | Cite as

Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods

  • V. Marin
  • M. E. Huntley
  • B. Frost


We have re-evaluated the experimental methods and statistical procedures used to determine the relationship between feeding rates of pelagic herbivores and food concentration. Analysis of our own experiments, on Calanus pacificus feeding on Gyrodinium resplendens, and of other published research on this subject suggests the need for improvements in experimental design and methodology. We show that the use of “mean concentration” is statistically erroneous. First, it produces an artificial increase in the degrees of freedom that may result in the acceptance of nonsignificant regression lines. Second, it negates the value of replication, which is required to estimate sources of error. We present an example of how replication may be used to improve control over sources of error. Furthermore, we recommend the use of initial concentration rather than mean concentration. Finally, we introduce alternative methods to determine clearance and ingestion rates that enable the investigator to use replication and thus to estimate experimental errors.


Statistical Procedure Experimental Method Regression Line Food Concentration Ingestion Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Barthel, K.-G.: Food uptake and growth of Eurytemora affinis (Copepoda: Calanoida). Mar. Biol. 74, 269–274 (1983)Google Scholar
  2. Cochran, W. and G. M. Cox: Experimental design, 611 pp. New York: Wiley & Sons 1957Google Scholar
  3. Conover, R. J. and P. Mayzaud: Utilization of phytoplankton by zooplankton during the spring bloom in a Nova Scotia inlet. Can. J. Fish. aquat. Sciences 41, 232–244 (1984)Google Scholar
  4. Deason, E. E.: Grazing of Acartia hudsonica (A. clausii) on Skeletonema costatum in Narragansett Bay (USA): influence of food concentration and temperature. Mar. Biol. 60, 101–113 (1980)Google Scholar
  5. Deibel, D.: Laboratory-measured grazing and ingestion rates of the salp, Thalia democratica Forskal, and the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J. Plankton Res. 4, 189–201 (1982)Google Scholar
  6. Fernández, F.: Nutrition studies in the nauplius larva of Calanus pacificus (Copepoda: Calanoida). Mar. Biol. 53, 131–147 (1979)Google Scholar
  7. Frost, B. W.: Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–814 (1972)Google Scholar
  8. Frost, B. W.: Feeding behavior of Calanus pacificus in mixtures of food particles. Limnol. Oceanogr. 22, 472–492 (1977)Google Scholar
  9. Glasser, J. W.: Analysis of zooplankton feeding experiments: some methodological considerations. J. Plankton Res. 6, 553–569 (1984)Google Scholar
  10. Haq, S.: Nutritional physiology of Metridia lucens and M. longa from the Gulf of Maine. Limnol. Oceanogr. 12, 40–51 (1967)Google Scholar
  11. Harvey, H. W.: Note on selective feeding by Calanus. J. mar. biol. Ass. U.K. 22, 97–100 (1937)Google Scholar
  12. Holling, C. S.: The functional response of invertebrate predators to prey density. Mem. ent. Soc. Can. 48, 1–86 (1966)Google Scholar
  13. Huntley, M.: Nonselective, nonsaturated feeding by three calanid copepod species in the Labrador Sea. Limnol. Oceanogr. 26, 831–842 (1981)Google Scholar
  14. Huntley, M.: A method for estimating food-limitation and potential production of zooplankton communities. Arch. Hydrobiol. (Beih. Ergebn. Limnol.). 21, 41–55 (1985)Google Scholar
  15. Huntley, M. E., K.-G. Barthel and J. L. Star: Particle rejection by Calanus pacificus: discrimination between similarly sized particles. Mar. Biol. 74, 151–160 (1983)Google Scholar
  16. Huntley, M. (E.) and C. M. Boyd: Food limited growth of marine zooplankton. Am. Nat. 124, 455–478 (1984)Google Scholar
  17. Ikeda, T.: Feeding rate of planktonic copepods from a tropical sea. J. exp. mar. Biol. Ecol. 29, 263–277 (1977)Google Scholar
  18. Lam, R. and B. Frost: Model of copepod filtering response to changes in size and concentration of food. Limnol. Oceanogr. 21, 490–500 (1976)Google Scholar
  19. Lampert, W.: Inhibitory and toxic effects of blue-green algae on Daphnia. Int. Revue ges. Hydrobiol. 66, 285–298 (1981)Google Scholar
  20. Lampitt, R. S. and J. C. Gamble: Diet and respiration of the planktonic marine copepod Oithona nana. Mar. Biol. 66, 185–190 (1982)Google Scholar
  21. Lund, J. W. G., C. Kipling and E. D. Le Cren: The inverted microscope method of estimating algal numbers, and the statistical basis of estimation by counting. Hydrobiologia 11, 143–170 (1958)Google Scholar
  22. Mullin, M.: Some factors affecting the feeding of marine copepods of the genus Calanus. Limnol. Oceanogr. 8, 239–250 (1963)Google Scholar
  23. Mullin, M. and E. R. Brooks: The effect of concentration of food on body weight, cumulative ingestion and rate of growth of the marine copepod C. helgolandicus. Limnol. Oceanogr. 15, 753–755 (1970)Google Scholar
  24. Omori, M. and T. Ikeda: Methods in marine zooplankton ecology, 332 pp. New York: Wiley 1984Google Scholar
  25. Paffenhöfer, G.-A.: Continuous and nocturnal feeding of the marine planktonic copepod Calanus helgolandicus. Bull. mar. Sci. 26, 49–58 (1976)Google Scholar
  26. Paffenhöfer, G.-A. and R. P. Harris: Feeding, growth and reproduction of the marine planktonic copepod Pseudocalanus elongatus Boeck. J. mar. biol. Ass. U.K. 56, 327–344 (1976)Google Scholar
  27. Peters, R. H.: Methods for the study of feeding, grazing and assimilation by zooplankton. In: A manual on methods for the assessment of secondary productivity in fresh waters, 2nd ed. pp 336–412. Ed. by J. A. Downing and F. H. Rigler. Oxford: Blackwell 1984 (IBP Handbook No. 17)Google Scholar
  28. Porter, K., J. Gerritsen and J. Orcutt: The effect of food concentration on swimming pattern, feeding behavior, assimilation and respiration by Daphnia. Limnol. Oceanogr. 27, 935–949 (1982)Google Scholar
  29. Rigler, F. H.: The relation between concentration of food and feeding rate of Daphnia magna Straus. Can. J. Zool. 39, 857–868 (1961)Google Scholar
  30. Rigler, F. H.: Feeding rates. In: A manual on methods for the assessment of secondary productivity in freshwaters, pp 228–256. Ed. by W. T. Edmonson and G. G. Winberg. Oxford: Blackwell 1971 (IBP Handbook No. 17)Google Scholar
  31. Sokal, R. R. and F. J. Rohlf: Biometry. The principles and practice of statistics in biological research, 2nd ed. 859 pp. San Francisco: W. H. Freeman & Co. 1981Google Scholar
  32. Steele, J. H. and B. W. Frost: The structure of plankton communities. Proc. R. Soc. (Ser. B) 280, 485–535 (1977)Google Scholar
  33. Steele, J. H. and M. M. Mullin: Zooplankton dynamics. In: The sea, Vol. 6. pp 857–890. Ed. by E. D. Goldberg. New York: Wiley-Interscience 1977Google Scholar
  34. Taguchi, S. and M. Fukuchi: Filtration rate of zooplankton community during spring bloom in Akeshi Bay. J. exp. mar. Biol. Ecol. 19, 145–164 (1975)Google Scholar
  35. Turner, J. T. and D. M. Anderson: Zooplankton grazing during dinoflagellate blooms in a Cape Cod embayment with observations of predation upon tintinnids by copepods. Pubbl. Staz. zool. Napoli (I: Mar. Ecol.) 4, 359–374 (1983)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • V. Marin
    • 1
  • M. E. Huntley
    • 2
  • B. Frost
    • 3
  1. 1.Scripps Institution of OceanographyLa JollaUSA
  2. 2.Scripps Institution of OceanographyLa JollaUSA
  3. 3.School of OceanographyUniversity of WashingtonSeattleUSA

Personalised recommendations