Antonie van Leeuwenhoek

, Volume 52, Issue 4, pp 295–308 | Cite as

The respiratory activities of four Hansenula species

  • A. M. Viola
  • T. Bortesi
  • R. Pizzigoni
  • P. P. Puglisi
  • P. Goffrini
  • I. Ferrero
Article

Abstract

The respiratory activities and the cytochrome spectra from four species belonging to the genus Hansenula have been analysed. The results obtained and described in this paper show that (1) H. glucozyma posseses only the primary, antimycin A-sensitive respiration, (2) H. anomala and H. californica possess primary and secondary (salicylhydroxamate-sensitive) respirations, whereas (3) H. saturnus possesses three respiratory activities (AA-sensitive, SHAM-sensitive, and AA + SHAM-insensitive). The respiratory activity of H. glucozyma is glucose-repressible, whereas the activities of the other species are not. In addition, antimycin A (AA) and erythromycin (ERY) in the culture media differently inhibit the growth of the four species and regulate the respiratory pathways in the species analysed.

Keywords

Respiratory Pathway Erythromycin Respiratory Activity Cytochrome Spectrum Hansenula Species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulder, C. J. E. A. (1964a) Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts. Antonie van Leeuwenhoek 30: 1–9Google Scholar
  2. Bulder, C. J. E. A. (1964b) Lethality of the petite mutation in petite negative yeasts. Antonie van Leeuwenhoek 30: 442–454Google Scholar
  3. De Deken, R. H. (1966a) The Crabtree effect: A regulatory system in yeast. J. Gen. Microbiol. 44: 149–156Google Scholar
  4. De Deken, R. H. (1966b) The Crabtree effect and its relation to the petite mutation. J. Gen. Microbiol. 44: 157–165Google Scholar
  5. Ferrero, I., Rossi, C., Landini, M. P. & Puglisi, P. P. (1978) Role of the mitochondrial protein synthesis in the catabolite repression of the petite negative yeast Kluyveromyces lactis. Biochem. Biophys. Res. Commun. 80: 340–348Google Scholar
  6. Ferrero, I., Rossi, C., Marmiroli, N., Donnini, C. & Puglisi, P. P. (1981a) Effect of chloramphenicol, antimycin A and hydroxamate on the morphogenetic development of the dimorphic ascomycete E. capsularis. Antonie van Leeuwenhoek 47: 311–323Google Scholar
  7. Ferrero, I., Saccani, M. G., Rossi, C., Viola, A. M. & Puglisi, P. P. (1981b) The role of the mitochondrial particle in the regulation of the L- and D-lactate ferricytochrome c oxidoreductases in the yest S. cerevisiae. Microbiologica 4: 131–139Google Scholar
  8. Ferrero, I., Viola, A. M. & Goffeau, A. (1981c) Induction by glucose of an antimycin-insensitive, azide-sensitive respiration in the yeast K. lactis. Antonie van Leeuwenhoek 47: 11–24Google Scholar
  9. Goffeau, A. (1978) A new type of respiration in the yeast Schizosaccharomyces pombe characterized by insensitivity to cyanide, antimycin and hydroxamate and sensitivity to high concentrations of azide. In: D. Ducet & C. Lance (eds), Plant Mitochondria, pp. 275–282. North Holland Biomedical Press, AmsterdamGoogle Scholar
  10. Hartig, A. & Breitenbach, M. (1980) Sporulation in mitochondrial OXI3 mutants of S. cerevisiae: A correlation with the genetic map. Curr. Genet 1: 97–102Google Scholar
  11. Henry, M. F. & Nyns, E. J. (1975) Cyanide-insensitive respiration: An alternative mitochondrial pathway. Sub-Cell Biochem. 4: 1–65Google Scholar
  12. Lamb, A. J., Clark-Walker, G. D. & Linnane, A. W. (1968) The differentiation of mitochondrial and cytoplasmic synthesizing system in vitro by antibiotics. Biochim. et Biophys. Acta 161: 415–427Google Scholar
  13. Lodi, T., Viola, A. M., Rossi, C. & Ferrero, I. (1985) Antimycin- and hydroxamate-insensitive respiration in yeast. Antonie van Leeuwenhoek 51: 57–64Google Scholar
  14. Kreger-van Rij, N. J. W. (1984) The yeasts: A taxonomic study. Elsevier Science Publishers, AmsterdamGoogle Scholar
  15. Kurtzman, C. P. (1984) Genus 11, Hansenula H. et P. Sydow. In: N. J. W. Kreger-van Rij (ed), The yeasts: A taxonomic study, p. 165, Elsevier Science Publishers, AmsterdamGoogle Scholar
  16. Magni, G. E. and Von Borstel, R.C. (1962) Different rates of spontaneous mutation during mitosis and meiosis in yeast. Genetics 47: 1097–1108Google Scholar
  17. Maresca, B., Lambowitz, A. M., Kodayashi, G. S. & Medoff, G. (1979) Respiration in the yeast and mycelial phases of Histoplasma capsulatum. J. Bacteriol. 138: 647–649Google Scholar
  18. Marmiroli, N. (1984) Sporulation and mitochondrial activity in the dimorphic yeast Endomycopsis capsularis. Curr. Genet. in pressGoogle Scholar
  19. Marmiroli, N., Ferri, M. & Puglisi, P. P. (1983) Involvement of mitochondrial protein synthesis in sporulation: Effects of erythomycin on macromolecular synthesis, meiosis, and ascospore formation in S. cerevisiae. J. Bacteriol. 154: 118–129Google Scholar
  20. Marmiroli, N., Tassi, F., Bianchi, L., Algeri, A. A., Puglisi, P. P. & Esposito, M. S. (1981) Erythromycin and cycloheximide sensitivities of protein and RNA synthesis in sporulating cells of S. cerevisiae: Environmentally induced modifications controlled by chromosomal and mitochondrial genes. Curr. Genet. 4: 51–62Google Scholar
  21. Ohnishi, T., Sottocasa, G. & Ernster, L. (1966) Current approaches to the mechanism of energy-coupling in the respiratory chain: Studies with yeast mitochondria. Bull. Soc. Chim. Biol. 48: 1189–1203Google Scholar
  22. Polakis, E. S., Bartley, W. & Meek, G. A. (1965) Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem. J. 97: 298–302Google Scholar
  23. Pratje, E., Schulz, R., Schnierrer, S. & Michaelis, G. (1979) Sporulation of mitochondrial respiratory deficient mit mutants of S. cerevisiae. Molec. Gen. Genet. 176: 411–415Google Scholar
  24. Puglisi, P. P. & Algeri, A. A. (1971) Role of the mitochondria in the regulation of protein synthesis in the eukaryote S. cerevisiae. Molec. Gen. Genet. 110: 110–117Google Scholar
  25. Puglisi, P. P. & Algeri, A. A. (1974) Interaction of mitochondrial protein synthesis in the regulation of gene activity in S. cerevisiae. In: A. M. Kroon & C. Saccone (eds), The biogenesis of mitochondria, pp. 169–176. Academic Press, New YorkGoogle Scholar
  26. Puglisi, P. P. & Zennaro, E. (1971) Erythromycin inhibition of sporulation in S. cerevisiae. Experientia 27: 963–964Google Scholar
  27. Shepherd, M. G., Chin Moi, Chin & Sullivan, P. A. (1978) The alternate respiratory pathway of Candida albicans. Arch. Microbiol. 116: 61–67Google Scholar
  28. Viola, A. M. & Marmiroli, N. (1983) Sporulation and respiratory metabolism in the petite negative yeast H. saturnus. Curr. Genet. 7: 37–45Google Scholar
  29. Viola, A. M., Tassi, F., Goffrini, P., Lodi, T. & Ferrero, I. (1983) Respiratory pathways in H. saturnus. Antonie van Leeuwenhoek 49: 537–549Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1986

Authors and Affiliations

  • A. M. Viola
    • 1
  • T. Bortesi
    • 1
  • R. Pizzigoni
    • 1
  • P. P. Puglisi
    • 1
  • P. Goffrini
    • 1
  • I. Ferrero
    • 1
  1. 1.Institute of GeneticsUniversity of ParmaParmaItaly

Personalised recommendations