Marine Biology

, Volume 91, Issue 3, pp 421–431 | Cite as

Ecological significance of salp fecal pellets collected by sediment traps in the eastern North Pacific

  • H. Matsueda
  • N. Handa
  • I. Inoue
  • H. Takano


Five sediment traps were moored at depths of 740, 940, 1 440, 3 440 and 4 240 m for 7 d in December 1982 at Station 5 in the eastern North Pacific about 400 km from San Francisco. Dark green sinking particles enclosed in tough membrane consisted of mostly coccolithophores with some diatoms, dinoflagellates and chrysophytes. The average size of the particles was 10x5x2 mm. These characteristics indicate that the particles were fecal pellets of salp inhabiting the surface waters. Vertical fluxes of the organic carbon and nitrogen through sinking of the salp fecal pellets ranged from 6.7 to 23 mgC m-2 d-1 and from 0.88 to 3.2 mgN m-2 d-1, respectively. These values were several times higher than those determined in other oceanic areas by sediment trap experiments. Hydrocarbons consisting of short-chain n-alkanes (n-C15-C20) with n-C17, the most predominant component, heneicosa-hexaene (n-C21:6), br-C25 alkenes and long-chain n-alkanes (n-C21-C30), without any odd or even carbon number predominance, were found from five depths. The presence of short-chain n-alkanes and n-C21:6 indicated that phytoplankton in the surface waters was a primary source of organic matter in the sinking particles. Two isomers of br-C25:3 and br-C25:4 alkenes found in these particles also indicated that br-C25 alkenes were the important biological marker of fecal pellet of zooplankton. The distribution pattern of the long-chain n-alkanes suggested that the sinking particles may be affected by bacteria to some extent. Fatty acids of the sinking particles were separated into free, triglyceride and wax ester fractions consisting of mono- and poly-unsaturated, and saturated fatty acids, with a range from C14 to C30. Concentrations of mono- and poly-unsaturated fatty acids decreased more rapidly toward the deep than those of saturated fatty acids, which cause low ratios of mono- and poly-unsaturated fatty acids/saturated fatty acids. This indicates that unsaturated fatty acids were more rapidly decayed by marine microbes than saturated fatty acids in the deep water, despite the fact that a significant amount of unsaturated fatty acids still remained in the sinking particles collected from the deep waters. Our results revealed that the salp fecal pellet plays an important role in supplying foods to organisms in intermediate and deep seas.


Phytoplankton Unsaturated Fatty Acid Saturated Fatty Acid Dinoflagellate Fecal Pellet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Antia, N. J., R. F. Lee, J. C. Nevenzel and J. Y. Cheng: Wax ester production by the marine cryptomonad Chroomonas salina grown photoheterotrophically on glycerol. J. Protozool. 21, 768–771 (1974)Google Scholar
  2. Balistrieri, L., P. G. Brewer and J. W. Murray: Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep-Sea Res. 28, 101–121 (1981)Google Scholar
  3. Barrick, R. C., J. I. Hedges and M. L. Peterson: Hydrocarbon geochemistry of the Puget Sound region I. Sedimentary acyclic hydrocarbons. Geochim. cosmochim. Acta 44, 1349–1362 (1980)Google Scholar
  4. Beasley, T. M., M. Heyraud, J. J. W. Higgo, R. D. Cherry and S. W. Fowler: 210Po and 210Pb in zooplankton fecal pellets. Mar. Biol. 44, 325–328 (1978)Google Scholar
  5. Blumer, M., R. R. L. Guillard and T. Chase: Hydrocarbons of marine phytoplankton. Mar. Biol. 8, 183–189 (1971)Google Scholar
  6. Boothe, P. N. and G. A. Knauer: The possible importance of fecal material in the biological amplification of trace and heavy metals. Limnol. Oceanogr. 17, 270–274 (1972)Google Scholar
  7. Bruland, K. W. and M. W. Silver: Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids). Mar. Biol. 63, 295–300 (1981)Google Scholar
  8. Cherry, R. D., S. W. Fowler, T. M. Beasley and M. Heyraud: Polonium-210: its vertical oceanic transport by zooplankton metabolic activity. Mar. Chem. 3, 105–110 (1975)Google Scholar
  9. Chuecas, L. and J. P. Riley: Component fatty acids of the total lipids of some marine phytoplankton. J. mar. biol. Ass. U.K. 49, 97–116 (1969)Google Scholar
  10. Clark, R. C., Jr. and M. Blumer: Distribution of n-paraffins in marine organisms and sediment. Limnol. Oceanogr. 12, 79–87 (1967)Google Scholar
  11. Crisp, P. T., S. Brenner, M. I. Venkatesan, E. Ruth and I. R. Kaplan: Organic chemical characterization of sediment-trap particulates from San Nicolas, Santa Barbara, Santa Monica and San Pedro Basins, California. Geochim. cosmochim. Acta 43, 1791–1801 (1979)Google Scholar
  12. Davis, J. B.: Paraffinic hydrocarbons in the sulfate-reducing bacterium Desulfovibrio desulfuricans. Chem. Geol. 3, 155–160 (1968)Google Scholar
  13. Deuser, W. G., E. H. Ross and R. F. Anderson: Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. Deep-Sea Res. 28, 495–505 (1981)Google Scholar
  14. Dunbar, R. B. and W. H. Berger: Fecal pellet flux to modern bottom sediment of Santa Barbara Basin (California) based on sediment trapping. Geol. Soc. Am. Bull. 92, 212–218 (1981)Google Scholar
  15. Eglinton, G. and R. J. Hamilton: The distribution of alkanes. In: Chemical plant taxonomy, pp 187–217 Ed. by T. Swain. New York: Academic Press 1963Google Scholar
  16. Elder, D. L. and S. W. Fowler: Polychlorinated biphenyls: penetration into the deep ocean by zooplankton fecal pellet transport. Science, N.Y. 197, 459–461 (1977)Google Scholar
  17. Farrington, J. W., N. M. Frew, P. M. Gschwend and B. W. Tripp: Hydrocarbons in cores of northwestern Atlantic coastal and continental margin sediments. Estuar. cstl mar. Sci. 5, 793–808 (1977a)Google Scholar
  18. Farrington, J. W., S. M. Henrichs and R. Anderson: Fatty acids and Pb-210 geochronology of a sediment core from Buzzards Bay, Massachusetts. Geochim. cosmochim. Acta 41, 289–296 (1977b)Google Scholar
  19. Fowler, S. W.: Trace elements in zooplankton particulate products. Nature, Lond. 269, 51–53 (1977)Google Scholar
  20. Fowler, S. W., M. Heyraud, L.F. Small and G. Benayoum: Flux of 141Ce through a euphausiid crustacean. Mar. Biol. 21, 317–325 (1973)Google Scholar
  21. Gagosian, R. B., S. O. Smith and G. L. Nigrelli: Vertical transport of steroid alcohols and ketones measured in a sediment trap experiment in the equatorial Atlantic Ocean. Geochim. cosmochim. Acta 46, 1163–1172 (1982)Google Scholar
  22. Gelpi, E., H. Schneider, J. Mann and J. Orò: Hydrocarbons of geochemical significance in microscopic algae. Phytochem. 9, 603–612 (1970)Google Scholar
  23. Han, J., E. D. McCarthy, W. V. Hoeven, M. Calvin and W. H. Bradley: Organic geochemical studies, II. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment. Proc. natl Acad. Sci. USA 59, 29–33 (1968)Google Scholar
  24. Handa, N. and E. Tanoue: Carbon cycle in the ocean. (in Japanese) Extrait de La mer 4, 190–199 (1980)Google Scholar
  25. Handa, N. and E. Tanoue: Organic compounds of the suspended particles in the Pacific Sector of the Southern Ocean. Mem. natl Inst. Polar Res. Spec Iss. No. 27, 50–63 (1983)Google Scholar
  26. Heyraud, M., S. W. Fowler, T. M. Beasley and R. D. Cherry: Polonium-210 in euphausiids: a detailed study. Mar. Biol. 34, 127–136 (1976)Google Scholar
  27. Hinga, K. R., J. McN. Sieburth and G. R. Heath: The supply and use of organic material at the deep-sea floor. J. mar. Res. 37, 557–579 (1979)Google Scholar
  28. Honjo, S.: Coccoliths: production, transportation and sedimentation. Mar. Micropaleontol. 1, 65–79 (1976)Google Scholar
  29. Honjo, S.: Material fluxes and modes of sedimentation in the mesopelagic and bathypelagic zones. J. mar. Res. 38, 53–97 (1980)Google Scholar
  30. Honjo, S.: Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin. Science, N.Y. 218, 883–884 (1982)Google Scholar
  31. Honjo, S. and M. R. Roman: Marine copepod fecal pellets: production, preservation and sedimentation. J. mar. Res. 36, 45–57 (1978)Google Scholar
  32. Iseki, K.: Particulate organic matter transport to the deep sea by salp fecal pellets. Mar. Ecol. Prog. Ser. 5, 55–60 (1981)Google Scholar
  33. Ittekkot, V., E. T. Degens and S. Honjo: Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Panama Basin. Deep-Sea Res. 31, 1071–1083 (1984a)Google Scholar
  34. Ittekkot, V., W. G. Deuser and E. T. Degens: Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Sargasso Sea. Deep-Sea Res. 31, 1057–1069 (1984b)Google Scholar
  35. Johns, R. B., G. J. Perry and K. S. Jackson: Contribution of bacterial lipids to recent marine sediments. Estuar. cstl mar. Sci. 5, 521–529 (1977)Google Scholar
  36. Kaneda, T.: Fatty acids in the genus Bacillus. I. Iso- and anteisofatty acids as characteristic constituents of lipids in 10 species. J. Bacteriol. 93, 894–903 (1967)Google Scholar
  37. Knauer, G. A., J. H. Martin and K. W. Bruland: Fluxes of particulate carbon, nitrogen, and phosphorus in the upper water column of the northeast Pacific. Deep-Sea Res. 26, 97–108 (1979)Google Scholar
  38. Lee, C. and C. Cronin: The vertical flux of particulate organic nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. J. mar. Res. 40, 227–251 (1982)Google Scholar
  39. Lee, R. F.: Lipids of zooplankton from Bute Inlet, British Columbia. J. Fish. Res. Bd Can. 31, 1577–1582 (1974)Google Scholar
  40. Lee, R. F., J. Hirota and A. M. Barnett: Distribution and importance of wax esters in marine copepods and other zooplankton. Deep-Sea Res. 18, 1147–1165 (1971)Google Scholar
  41. Lee, R. F., J. C. Nevenzel, G. A. Paffenhöfer, A. A. Benson, S. Patton and T. E. Kavanagh: A unique hexaene hydrocarbon from a diatom (Skeletonema costatum). Biochim. biophys. Acta 202, 386–388 (1970)Google Scholar
  42. Matsueda, H. and N. Handa: Source of organic matter of the sinking particles collected from the Pacific Sector of the Antarctic Ocean by sediment trap experiment. Mem. natl Inst. Polar Res. Spec. Iss. 40, 363–378 (1986)Google Scholar
  43. Menzel, D. W. and R. F. Vaccaro: The measurement of dissolved organic and particulate carbon in seawater. Limnol. Oceanogr. 9, 138–142 (1964)Google Scholar
  44. Prahl, F. G., J. T. Bennett and R. Carpenter The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. Geochim. cosmochim. Acta 44, 1967–1976 (1980)Google Scholar
  45. Prahl, F. G. and R. Carpenter: The role of zooplankton fecal pellets in the sedimentation of polycyclic aromatic hydrocarbons in Dabob Bay, Washington. Geochim. cosmochim. Acta 43, 1959–1972 (1979)Google Scholar
  46. Prahl, F. G., G. Eglinton, E. D. S. Corner and S. C. M. O'Hara: Copepod fecal pellets as a source of dihydrophytol in marine sediments. Science, N.Y. 224, 1235–1237 (1984)Google Scholar
  47. Repeta, D. J. and R. B. Gagosian: Carotenoid transformation products in the upwelled waters off the Peruvian coast: suspended particulate matter, sediment trap material, and zooplankton fecal pellet analyses. In: Advances in organic geochemistry, 1981, pp 380–388 Ed. by M. Bjorøy New York: John Wiley 1983Google Scholar
  48. Requejo, A. G. and J. G. Quinn: Geochemistry of C25 and C30 biogenic alkenes in sediments of the Narragansett Bay estuary. Geochim. cosmochim. Acta 47, 1075–1090 (1983)Google Scholar
  49. Rhead, M. M., G. Eglinton, G. H. Draffan and P. J. England: Conversion of oleic acid to saturated fatty acids in Severn estuary sediments. Nature, Lond. 232, 327–330 (1971)Google Scholar
  50. Silver, M. W. and K. W. Bruland: Differential feeding and fecal pellet composition of salps and pteropods, and the possible origin of the deep-water flora and olive-green “cells”. Mar. Biol. 62, 263–273 (1981)Google Scholar
  51. Sleeter, T. D. and J. N. Butler: Petroleum hydrocarbons in zooplankton faecal pellets from the Sargasso Sea. Mar. Pollut. Bull 13, 54–56 (1982)Google Scholar
  52. Small, L. F. and S. W. Fowler: Turnover and vertical transport of zinc by the euphausiid Meganyctiphanes norvegica in the Ligurian Sea. Mar. Biol. 18, 284–290 (1973)Google Scholar
  53. Suess, E.: Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, Lond. 288, 260–263 (1980)Google Scholar
  54. Tanoue, E. and N. Handa: Vertical transport of organic materials in the northern North Pacific as determined by sediment trap experiment. Part 1. Fatty acids composition. J. oceanogr. Soc. Japan 36, 231–245 (1980)Google Scholar
  55. Urrére, M. A. and G. A. Knauer: Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment. J. Plankt. Res. 3, 369–387 (1981)Google Scholar
  56. Volkman, J. K., G. Eglinton, E. D. S. Corner and T. E. V. Forsberg: Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochem. 19, 2619–2622 (1980)Google Scholar
  57. Volkman, J. K., J. W. Farrington, R. B. Gagosian and S. G. Wakeham: Lipid composition of coastal marine sediments from the Peru upwelling region. In: Advances in organic geochemistry, 1981 pp 228–240 Ed. by M. Bjorøy New York: John Wiley 1983Google Scholar
  58. Volkman, J. K., D. J. Smith, G. Eglinton, T. E. V. Forsberg and E. D. S. Corner: Sterol and fatty acid composition of four marine haptophycean algae. J. mar. biol. Ass. U.K. 61, 509–527 (1981)Google Scholar
  59. Wakeham, S. G.: Organic matter from a sediment trap experiment in the equatorial North Atlantic: wax esters, steryl esters, triacylglycerols, and alkyldiacylglycerols. Geochim. cosmochim. Acta. 46, 2239–2257 (1982)Google Scholar
  60. Wakeham, S. G., J. W. Farrington, R. B. Gagosian, C. Lee, H. DeBaar, G. E. Nigrelli, B. W. Tripp, S. O. Smith and N. M. Frew: Organic matter fluxes from sediment traps in the equatorial Atlantic Ocean. Nature, Lond. 286, 798–800 (1980)Google Scholar
  61. Wakeham, S. G., C. Lee, J. W. Farrington and R. B. Gagosian: Biogeochemistry of particulate organic matter in the oceans: results from sediment trap experiments. Deep-Sea Res. 31, 509–528 (1984)Google Scholar
  62. Watanabe, T. and R. G. Ackman: Lipids and fatty acids of the American (Crassostrea virginica) and European flat (Ostrea edulis) oysterns from a common habitat, and after one feeding with Dicrateria inornata or Isochrysis galbana. J. Fish. Res. Bd Can. 31, 403–409 (1974)Google Scholar
  63. Wiebe, P. H., S. H. Boyd and C. Winget: Particulate matter sinking to the deep-sea floor at 2 000 m in the Tongue of the Ocean, Bahamas, with a description of a new sedimentation trap. J. mar. Res. 34, 341–354 (1976)Google Scholar
  64. Youngblood, W. W. and M. Blumer: Alkanes and alkenes in marine benthic algae. Mar. Biol. 21, 163–172 (1973)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • H. Matsueda
    • 1
  • N. Handa
    • 1
  • I. Inoue
    • 2
  • H. Takano
    • 3
  1. 1.Water Research InstituteNagoya UniversityNagoyaJapan
  2. 2.Institute of Biological ScienceThe University of TsukubaIbarakiJapan
  3. 3.Tokai Regional Fisheries Research LaboratoryTokyoJapan

Personalised recommendations