Marine Biology

, Volume 90, Issue 3, pp 363–369 | Cite as

Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa

  • G. J. Herndl
  • B. Velimirov


The amount of mucus released by the Mediterranean coral Cladocora cespitosa (L.) was determined in laboratory experiments and the incorporation of mucus into bacterial biomass was investigated by means of incubation experiments in 1984. Mean mucus release was 8.5 μg (mucus dry wt) pclyp-1 h-1 and amounted to 44% of the respiratory carbon losses of the coral since mean organic carbon content of freshly collected mucus was 102.2μg C mg (mucus dry wt)-1. Due to the abundance of C. cespitosa in the shallow littoral of the Bight of Piran, the energy content of mucus released is estimated to correspond to about 20% of the phytoplankton primary production in this area. Furthermore, the carbon conversion efficiency of 20% obtained from the bacterial population during decomposition of mucus indicates the high nutritional value of C. cespitosa mucus, although bacterial carbon onto mucus particles contributes less than 0.1% to the total organic carbon pool of the mucus.


Biomass Phytoplankton Organic Carbon Total Organic Carbon Conversion Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Benson, A. A. and L. Muscatine: Wax in coral mucus: energy transfer from corals to reef fishes. Limnol. Oceanogr. 19, 810–814 (1974)Google Scholar
  2. Burkholder, P. R.: The ecology of marine antibiotics and coral reefs. In: Biology and geology of coral reefs. 2. Biology Vol. 1, pp 117–182. Ed. by O. A. Jones and R. Endean, London: Academic Press 1973Google Scholar
  3. Coffroth, M. A.: Ingestion and incorporation of coral mucus aggregates by a gorgonian soft coral. Mar. Ecol. Prog. Ser. 17, 193–199 (1984)Google Scholar
  4. Coles, S. L. and R. Strathman: Observations on coral mucus flocs and their potential trophic significance. Limnol. Oceanogr 18, 673–678 (1973)Google Scholar
  5. Copping, A. E. and C. J. Lorenzen: Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer. Limnol. Oceanogr. 25, 873–882 (1980)Google Scholar
  6. Crossland, C. J., D. J. Barnes, T. Cox and M. Devereux: Compartmentation and turnover of organic carbon in the staghorn coral Acropora formosa. Mar. Biol. 59, 181–187 (1980a)Google Scholar
  7. Crossland, C. J., D. J. Barnes and M. A. Borowitzka: Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar. Biol. 60, 81–90 (1980b)Google Scholar
  8. Daley, R. J.: Direct epifluorescence enumeration of native aquatic bacteria: uses, limitations and comparative accuracy. In: Native aquatic bacteria: enumeration, activity and ecology, pp 29–45. Ed. by J. W. Costerton and R. R. Colwell. Philadelphia: American Society for Testing and Materials 1979Google Scholar
  9. Daumas, R. and B. A. Thomassin: Protein fractions in coral and zoantharian mucus: possible evolution in coral reef environments. Proc. 3rd int. Symp. Coral Reefs, pp 517–523. Ed. by D. L. Taylor. Miami: School of Marine and Atmospheric Sciences, University of Miami 1977Google Scholar
  10. Davies, P. S.: The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2, 181–186 (1984)Google Scholar
  11. Ducklow, H. and R. Mitchell: Composition of mucus released by coral reef coelenterates. Limnol. Oceanogr. 24, 706–714 (1979a)Google Scholar
  12. Ducklow, H. and R. Mitchell: Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24, 715–725 (1979b)Google Scholar
  13. Es, van F. B. and L.-A. Meyer-Reil: Biomass and metabolic activity of heterotrophic marine bacteria. Adv. microb. Ecol. 6, 111–170 (1982)Google Scholar
  14. Fenchel, T. M. and B. B. Jørgensen: Detritus food chains of aquatic ecosystems: the role of bacteria. Adv. microb. Ecol. 1, 3–37 (1977)Google Scholar
  15. Goreau, T. F., N. I. Goreau, C. M. Yonge and Y. Neuman: On feeding and nutrition in Fungiacava eilatensis (Bivalvia, Mytilidae), a commensal living in fungiid corals. J. Zool. Lond. 160, 159–172 (1970)Google Scholar
  16. Gottfried, M. and M. R. Roman: Ingestion and incorporation of coral-mucus detritus by reef zooplankton. Mar. Biol. 72, 211–218 (1983)Google Scholar
  17. Herndl, G. J., B. Velimirov and R. E. Krauss: Heterotrophic nutrition and control of bacterial density in the coelenteron of the giant sea anemone Stoichactis giganteum. Mar. Ecol. Prog. Ser. 22, 101–105 (1985)Google Scholar
  18. Hobbie, J. E., R. J. Daley and S. Jasper: Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. environ. Microbiol. 33, 1225–1228 (1977)Google Scholar
  19. Johannes, R. E.: Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr. 12, 189–195 (1967)Google Scholar
  20. Johannes, R. E.: Nutrient regeneration in lakes and oceans. In: Advances in microbiology of the sea. Vol 1, pp 203–213. Ed. by M. R. Droop and E. J. F. Wood. London: Academic Press 1968Google Scholar
  21. Joint, I. R. and R. J. Morris: The role of bacteria in the turnover of organic matter in the sea. Oceanogr. Mar. Biol. A. Rev. 20, 65–118 (1982)Google Scholar
  22. Knudsen, J. W.: Trapezia and Tetralia (Decapoda, Brachyura, Xanthidae) as obligate ectoparasites of pocilloporid and acroporid corals. Pacif. Sci. 21, 51–57 (1967)Google Scholar
  23. Koop, K., R. C. Newell and M. I. Lucas: Biodegradation and carbon flow based on kelp (Ecklonia maxima) debris in a sandy beach microcosm. Mar. Ecol. Prog. Ser. 7, 315–326 (1982a)Google Scholar
  24. Koop, K., R. C. Newell and M. I. Lucas: Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore. Mar. Ecol. Prog. Ser. 9, 91–96 (1982b)Google Scholar
  25. Krupp, D. A.: Mucus production by corals exposed during an extreme low tide. Pacif. Sci. 38, 1–11 (1984)Google Scholar
  26. Lampert, W.: Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23, 831–834 (1978)Google Scholar
  27. Lewis, J. B. and W. S. Price: Patterns of ciliary currents in Atlantic reef corals and their functional significance. J. Zool. Lond. 178, 77–89 (1976)Google Scholar
  28. Linley, E. A. S. and J. G. Field: The nature and ecological significance of bacterial aggregation in a nearshore upwelling ecosystem. Estuar. cstl Shelf Sci. 14, 1–11 (1982)Google Scholar
  29. Linley, E. A. S., R. C. Newell and S. A. Bosma: Heterotrophic utilization of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). I. Development of microbial communities associated with the degradation of kelp mucilage. Mar. Ecol. Prog. Ser. 4, 31–41 (1981)Google Scholar
  30. Luria, S. E.: The bacterial protoplasm: composition and organisation. In: The bacteira, Vol 1, pp 1–34. Ed. by I. C. Gunsalus and R. Y. Stanier. New York: Academic Press 1960Google Scholar
  31. Mann, K. H.: Ecology of coastal waters. A systems approach, 322 pp Oxford: Blackwell Scientific Publications 1982Google Scholar
  32. Marshall, N.: Observations on organic aggregates in the vicinity of coral reefs. Mar. Biol. 2, 50–53 (1968)Google Scholar
  33. Newell, R. C.: The biological role of detritus in the marine environment. In: Flows of energy and materials in marine ecosystems: Theory and practise. NATO Conference Series. Series IV Marine Sciences. Vol 13, pp 317–343. Ed. by M. J. R. Fasham. New York: Plenum Press 1984Google Scholar
  34. Newell, R. C., E. A. S. Linley and M. I. Lucas: Bacterial production and carbon conversion based on saltmarsh plant debris. Estuar. cstl Shelf Sci. 17, 405–419 (1983)Google Scholar
  35. Newell, R. C., M. I. Lucas and E. A. S. Linley: Rate of degradation and efficiency of conversion of phytoplankton debris by marine microorganisms. Mar. Ecol. Prog. Ser. 6, 123–136 (1981)Google Scholar
  36. Pomeroy, L. R.: The ocean's food web, a changing paradigm. Bio-Science 24, 499–504 (1974)Google Scholar
  37. Qasim, S. Z. and V. N. Sankaranarayanan: Production of particulate matter by the reef on Kavaratti Atoll. Limnol. Oceanogr. 15, 574–578 (1970)Google Scholar
  38. Richman, S., Y. Loya and L. B. Slobodkin: The rate of mucus production by corals and its assimilation by the reef copepod Acartia negligens. Limnol. Oceanogr. 20, 918–923 (1975)Google Scholar
  39. Rodina, A. G.: Methods in aquatic microbiology, 461 pp. Baltimore: University Park Press 1972Google Scholar
  40. Rublee, P. A., H. Lasker, M. Gottfried and M. R. Roman: Production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull. mar. Sci. 30, 888–893 (1980)Google Scholar
  41. Schuhmacher, H.: Ability of fungiid corals to overcome sedimentation. Proc. 3rd int. Symp. Coral Reefs, pp 503–510. Ed. by D. L. Taylor. Miami: School of Marine and Atmospheric Sciences, University of Miami 1977Google Scholar
  42. Scott, B. D. and H. R. Jitts: Photosynthesis of phytoplankton and zooxanthellae on a coral reef. Mar. Biol. 41, 307–315 (1977)Google Scholar
  43. Stirn, J.: Ecological consequences of marine pollution. Rev. int. Océanogr. Méd. Tome XXIV, 13–46 (1971)Google Scholar
  44. Stuart, V., R. C. Newell and M. I. Lucas: Conversion of kelp debris and faecal material from the mussel Aulocomya ater by marine microorganisms. Mar. Ecol. Prog. Ser. 7, 47–56 (1982)Google Scholar
  45. Tins, W.: Limitierende Faktoren bei Cladocora cespitosa (L.), 55 pp. M. S. thesis, University of Munich 1974Google Scholar
  46. Troitsky, A. S. and Y. I. Sorokin: On the methods of calculation of bacterial biomass in water bodies. Trans. Inst. Biol. Inland Waters. Acad. Sci., U.S.S.R. 19, 85–90 (1967)Google Scholar
  47. Velimirov, B., J. A. Ott and R. Novak: Microorganisms on macrophyte debris: biodegradation and its implication in the food web. Kieler Meeresforsch., Sonderheft 5, 333–344 (1981)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • G. J. Herndl
    • 1
  • B. Velimirov
    • 1
  1. 1.Institut für Zoologie der Universität WienViennaAustria

Personalised recommendations