Advertisement

Psychopharmacology

, Volume 83, Issue 4, pp 380–383 | Cite as

Effect of the memory-improving substance methylglucamine orotate on paradoxical sleep in rats

  • W. Wetzel
  • T. Ott
  • H. K. Matthies
  • H. Matthies
Original Investigations

Abstract

The effects of methylglucamine orotate (MGO) were studied on polygraphic sleep recordings in rats for 8 h per day between 8 a.m. and 4 p.m. MGO (225 mg/kg) was injected intraperitoneally immediately prior to the onset of recording. In the acute experiment, the effect of MGO was compared to pre- and post-drug control days. In the chronic experiment, a sequence of 5 control days, 10 days of MGO treatment, and a further 8 control days was tested. Both acute and chronic administration of MGO resulted in increased paradoxical sleep (PS) latency and a small, but significant, decrease in PS during the first 4 h after injection. This effect seems to be specific to PS, as no effects of MGO on waking or total sleep were found. With chronic administration, no PS rebound occurred within the 8-h recording time during the 8-day post-treatment control period. How the RNA precursor can decrease PS and whether this effect may play a role in the memory-improving action of the substance is discussed in terms of an interrelationship between macromolecular synthesis, sleep, and memory, respectively.

Key words

Methylglucamine orotate Memory Paradoxical sleep Rats 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam K (1980) Sleep as restorative process and a theory to explain why. Prog Brain Res 53:289–305Google Scholar
  2. Faber J, Havrdová Z (1981) Differential effect of REM, stimulating and REM inhibiting drugs (reserpine and amitriptylin) on memory. Activ Nerv Sup (Praha) 23:169–171Google Scholar
  3. Fishbein W, Kastaniotis C, Chattman D (1974) Paradoxical sleep: prolonged augmentation following learning. Brain Res 79: 61–75Google Scholar
  4. Fishbein W, Gutwein BM (1977) Paradoxical, sleep and memory storage processes. Behav Biol 19:425–464Google Scholar
  5. Glatt A, Klebs K, Koella WP (1978) Influence of vincamine and piracetam on sleep-waking pattern of the cat. Biol Psychiatry 13:417–427Google Scholar
  6. Gutwein BM, Shiromani PJ, Fishbein W (1980) Paradoxical sleep and memory: long-term disruptive effects of anisomycin. Pharmacol Biochem Behav 12:377–384Google Scholar
  7. Hennevin E, Leconte P (1977) Etude des relations entre le somneil paradoxal et les processus d'acquisition. Physiol Behav 18:307–314Google Scholar
  8. Matthies H, Lietz W (1967) Einfluß von Orotsäure auf das Erlöschen einer bedingten Fluchtreaktion der Ratte. Acta Biol Med Ger 19:785–787Google Scholar
  9. Matthies H, Fähse C, Lietz W (1971) Wirkung von RNS-Präkursoren auf die Erhaltung des Langzeitgedächtnisses. Psychopharmacologia 20:10–15Google Scholar
  10. McGinty DJ, Drucker-Colin RR (1982) Sleep mechanisms: biology and control of REM sleep. Int Rev Neurobiol 23:391–436Google Scholar
  11. McGrath MJ, Cohen DB (1978) REM sleep facilitation of adaptive waking behavior: a review of the literature. Psychol Bull 85:24–57Google Scholar
  12. Ott T, Matthies H (1971) Einfluß von Orotsäure und Pentetrazol auf Akquisition und Extinktion am Modell der optischen Diskriminierung. Acta Biol Med Ger 26:79–85Google Scholar
  13. Ott T, Matthies H (1973a) Suppression of uridine monophosphate induced improvement in long-term storage by cycloheximide. Psychopharmacologia 28:103–106Google Scholar
  14. Ott T, Matthies H (1973b), Some effects of RNA precursors on development and maintenance of long-term memory: Hippocampal and cortical pre- and post-training application of RNA precursors. Psychopharmacologia 28:195–204Google Scholar
  15. Ott T, Lössner B, Matthies, H (1972) Die Wirkung von Nukleotid-Monophosphaten auf die Akquisition und Extinktion bedingter Reaktionen. Psychopharmacologia 23:261–271Google Scholar
  16. Pohle W, Matthies H (1976) Influence of urdine-5-monophosphate on 3H-leucine incorporation into hippocampal neurons during learning. Pharmacol Biochem Behav 4:225–229Google Scholar
  17. Radulovacki M, Wojcik WJ, Walovitch R, Brodie M (1981a) Phenoxybenzamine and bromocriptine attenuate need for REM sleep in rats. Pharmacol Biochem Behav 14:371–375Google Scholar
  18. Radulovacki M, Brodie M, Walovitch R, Yanik G (1981b) Bromocriptine, dihydroergotoxine and sleep in rats: effects of repeated administration. Gerontology 27:152–157Google Scholar
  19. Rüthrich HL, Pohle W, Matthies H (1974) Increase of guanosine incorporation into RNA of hippocampal neurons by application of uridine monophosphate during a learning experiment. Brain Res 69:49–55Google Scholar
  20. Rüthrich HL, Wetzel W, Matthies H (1980) The persistence of the effect of methylglucamine orotate on the retention of a learned behavior in the rat. Acta Biol Med Ger 39:415–418Google Scholar
  21. Rüthrich H, Gvetaze L, Mandshavidze S, Oniani T (1981) Die Veränderung der Schlaf-Wach-Regulation der Katze unter dem Einfluß eines RNS-Präkursors. In: Hecht K, Poppei M, Rüdiger W, Seidel K (eds) Zentralnervensyste, Entwicklung—Störungen-Lernen-Motivation. VEB Deutscher Verlag der Wissenschaften, Berlin, pp 196–199Google Scholar
  22. Sitaram N, Weingartner H, Gillin JC (1979) Cholin chloride and arecoline: effects on memory and sleep in man. Nutr Brain 5:367–375Google Scholar
  23. Smith C, Butler S (1982) Paradoxical sleep at selective times following training is necessary for learning. Physiol Behav 29:469–473Google Scholar
  24. Stephan FK, Nunez AA (1977) Elimination of circadian rhythms in drinking, activity, sleep, and temperature by isolation of the suprachiasmatic nuclei. Behav Biol 20:1–16Google Scholar
  25. Stern WC, Morgan PJ (1974) Theoretical view of REM sleep function: Maintenance of catecholamine systems in the central nervous system. Behav Biol 11:1–32Google Scholar
  26. Van Hulzen ZJM, Coenen AML (1979) Selective deprivation of paradoxical sleep and consolidation of shuttle-box avoidance. Physiol Behav 23:821–826Google Scholar
  27. Wetzel W, Simonov PV (1978) Avoidance reaction to painful stimulation of another rat: effect of methylglucamine orotate. Pharmacol Biochem Behav 9:401–404Google Scholar
  28. Yonkov D, Wetzel W, Matthies H, Roussinov K (1981) Improvement of shuttle-box avoidance by combinations of orotic acid and central stimulants. Psychopharmacology 73:399–401Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • W. Wetzel
    • 1
  • T. Ott
    • 1
  • H. K. Matthies
    • 1
  • H. Matthies
    • 1
  1. 1.Institute of Pharmacology and ToxicologyMedical AcademyMagdeburgGerman Democratic Republic

Personalised recommendations