Marine Biology

, Volume 102, Issue 3, pp 329–339 | Cite as

Size composition of particulate organic matter in the lagoon of Tikehau atoll (Tuamotu archipelago)

  • J. Blanchot
  • L. Charpy
  • R. Le Borgne


Suspended particulate matter was comprehensively investigated from 6 to 17 April 1986 in the lagoon of Tikehau atoll (15°00′S; 148°10′W). Dry weight (DW), particulate organic carbon (POC), adenosine triphosphate (ATP), and chlorophyll a were measured for five size-classes (0.2 to 0.8 μm, 0.8 to 3 μm, 3 to 35 μm, 35 to 200 μm, and 200 to 2000 μm). Taxa were identified and counted for the whole plankton (both autotrophic and heterotrophic). Particles <3 μm accounted for 81% of the total POC (192 mg m-3), and detritus comprised 82% of the total POM. Phytoplankton (cyanobacteria plus algae) accounted for 35% of the living carbon, 75% of which consisted of heterotrophic bacteria and cyanobacteria. The zooplankton biomass was composed of 31% nano-, 26% micro-, and 43% mesoplankton.


Biomass Organic Matter Chlorophyll Phytoplankton Adenosine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Anonymous (1968). Smaller mesozooplankton. Report of Working Party No. 2. In: Zooplankton sampling. UNESCO Press, Paris, p. 153–159Google Scholar
  2. Beers, J. R., Reid, F. M. H., Stewart, G. L. (1980). Microplankton population structure in southern California nearshore waters in late spring. Mar. Biol. 60: 209–226Google Scholar
  3. Beers, J. R., Reid, F. M. H., Stewart, G. L. (1982). Seasonal abundance of the microplankton population in the North Pacific Central Gyre. Deep-Sea Res 29: 227–245Google Scholar
  4. Beers, J. R., Stewart, G. L. (1967). Microzooplankton in the euphotic zone at five locations across the Californian Current. J. Fish. Res. Bd Can. 24: 2053–2068Google Scholar
  5. Beers, J. R., Stewart, G. L. (1969). Micro-zooplankton and its abundance relative to the larger zooplankton and other seston components. Mar. Biol. 4: 182–189Google Scholar
  6. Beers, J. R., Stewart, G. L. (1970). The ecology of the plankton of La Jolla, California, in the period April through September, 1967. Part VI. Numerical abundance and estimated biomass of microzooplankton. Bull. Scripps Instn Oceanogr. (New Ser.) 17: 67–87Google Scholar
  7. Beers, J. R., Stewart, G. L. (1971). Microzooplankters in the plankton communities of the upper waters of the eastern tropical Pacific. Deep-Sea Res 18: 861–883Google Scholar
  8. Burkill, P. H. (1982). Ciliates and other microplankton components of a nearshore food-web: standing stocks and production processes. Annls Inst. océanogr., Paris (N. S.) 58: 335–350Google Scholar
  9. Capriulo, G. M., Carpenter, E. J. (1980). Grazing by 35 to 202 μm micro-zooplankton in Long Island Sound. Mar. Biol. 56: 319–326Google Scholar
  10. Charpy, L. (1985). Distribution and composition of particulate organic matter in the lagoon of Tikehau (Tuamotu Archipelago, French Polynesia). Proc. 5th int. coral Reef Congr. 3: 353–358 [Gabrié C. et al. (eds.) Antenne Museum-EPHE, Moorea, French Polynesia]Google Scholar
  11. Charpy, L. (1987). Phytoplankton production in a Tuamotu atoll lagoon (French Polynesia). Proc. 16th Pacif. Sci. Congr. 1: p. 42Google Scholar
  12. Charpy, L., Bonnet, S., Le Borgne, R. (1986). Contribution à l'étude de l'atoll de Tikehau II: Environnement, matière organique particulaire et production phytoplanctonique. Notes Docums océanogr. ORSTOM, Tahiti 28: 81–113Google Scholar
  13. Charpy-Roubaud, C. J., Charpy, L., Lemasson, L. (1989). Benthic and planktonic primary production of an open atoll lagoon (Tikehau, French Polynesia). Proc. 6th int. Symp. coral Reefs (In press). [Choat, J. H., et al. (eds.), Coral Reef Symposium Executive Committee, Townsville, Australia]Google Scholar
  14. Coles, S. L., Strathmann, R. (1973). Observations on coral mucus “flocs” and their potential trophic significance. Limnol. Oceanogr. 18: 673–678Google Scholar
  15. Davis, P. G., Sieburth, J. McN. (1982). Differentiation of phototrophic and heterotrophic nanoplankton populations in marine waters by epifluorescence microscopy. Annls Inst. océanogr., Paris 58: 249–259Google Scholar
  16. Ducklow, H. W., Mitchell, R. (1979a). Composition of mucus released by coral reef coelenterates. Limnol. Oceanogr. 24: 715–725Google Scholar
  17. Ducklow, H. W., Mitchell, R. (1979b). Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24: 706–714Google Scholar
  18. Estep, K. W., Davis, P. G., Keller, D., Sieburth, J. McN. (1986). How important are oceanic algal nanoflagellates in bacterivory? Limnol. Oceanogr. 31: 646–650Google Scholar
  19. Fenchel, T. (1982). The bioenergetics of a heterotrophic flagellate. Annls Inst. oceanogr., Paris 58: 55–60Google Scholar
  20. Frontier, S. (1972). Calcul de l'erreur sur un comptage de zooplancton. J. exp. mar. Biol. Ecol. 8: 121–132Google Scholar
  21. Gerber, R. P. (1974). Ingestion of detritus by the lagoon pelagic community at Enewetak atoll. Limnol. Oceanogr. 19: 815–824Google Scholar
  22. Gerber, R. P., Marshall, N. (1982). Characterization of the suspended particulate organic matter and feeding by the lagoon zooplankton at Enewetak atoll. Bull. mar. Sci. 32: 290–300Google Scholar
  23. Gordon, D. C., Sutcliffe, W. H. (1973). A new dry combustion method for the simultaneous determination of total organic carbon and nitrogen in sea water. Mar. Chem. 1: 231–244Google Scholar
  24. Hamilton, R. D., Holm-Hansen, O. (1967). Adenosine triphosphate content of marine bacteria. Limnol. Oceanogr 12: 319–324Google Scholar
  25. Heinbokel, J. F. (1978). Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177–189Google Scholar
  26. Herbland, A., Le Bouteiller, A. (1981). The size distribution of phytoplankton and particulate organic matter in the equatorial Atlantic Ocean. J. Plankton Res. 3: 659–673Google Scholar
  27. Herbland, A., Le Bouteiller, A., Raimbault, P. (1985). Size structure of phytoplankton biomass in the equatorial Atlantic Ocean. Deep-Sea Res. 32: 819–836Google Scholar
  28. Herndl, G. J., Velimirov, B. (1986). Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Mar. Biol. 90: 363–369Google Scholar
  29. Hirota, J., Szyper, J. (1976). Standing stocks of zooplankton size classes and trophic levels in Kaneohe bay, Oahu, Hawaiian islands. Pacif. Sci. 30: 341–361Google Scholar
  30. Holm-Hansen, O., Booth, C. R. (1966). The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol. Oceanogr. 11: 510–519Google Scholar
  31. Intes, A. (1984). L'atoll de Tikehau: généralités. Notes Docums océanogr. ORSTOM, Tahiti 22: 1–12Google Scholar
  32. Johannes, R. E. (1967). Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr. 12: 189–195Google Scholar
  33. Johannes, R. E., Gerber, R. (1974). Import and export of zooplankton and detritus by an Enewetok atoll coral community. Proc. 2nd int. Symp. coral Reefs 1: 97–104. [Cameron, A. M. et al. (eds.) Barrier Reef Committee, Brisbane]Google Scholar
  34. Johnson, P. W., Sieburth, J. McN. (1979). Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24: 928–935Google Scholar
  35. Johnson, P. W., Xu, H. S., Sieburth, J. McN. (1982). The utilization of chroococcoid cyanobacteria by marine protozooplankton but not by calanoid copepods. Annls Inst. océanogr., Paris 58: 297–308Google Scholar
  36. Landry, M. R., Haas, L. W., Fagerness, V. L. (1984). Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16: 127–133Google Scholar
  37. Laval-Peuto, M., Heinbokel, J. F., Anderson, J. R., Rassoulzadegan, F., Sherr, B. F. (1986). Role of micro- and nanozooplankton in marine food-webs. Insect Sci. Applic. 7: 387–395Google Scholar
  38. Le Borgne, R. (1975). Méthodes de mesures des biovolumes, poids secs sans cendre et des éléments CNP du mesozooplancton utilisées au C.R.O. d' Abidjan. Docums scient. Centre Rech. océanogr., Abidjan 6: 165–176Google Scholar
  39. Le Brogne, R., Blanchot, J., Charpy, L. (1989). Zooplankton of Tikehau atoll (Tuamotu archipelago) and its relationship to particulate matter. Mar. Biol. 102: 341–353Google Scholar
  40. Li, K. W. W., Subba Rao, D. V., Harrison, W. G., Smith, J. C., Cullen, J. J., Irwin, B., Platt, T. (1983). Autotrophic picoplankton in the tropical ocean. Science, N.Y. 219: 292–295Google Scholar
  41. Lund, J. W. G., Kipling, C., Lecren, E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170Google Scholar
  42. Marshall, N. (1968). Observations on aggregates in the vicinity of coral reefs. Mar. Biol. 2: 50–53Google Scholar
  43. Poulet, S. A. (1983). Factors controlling utilization of non algal diets by particle-grazing copepods: a review. Oceanol. Acta 6: 221–234Google Scholar
  44. Quasim, S. Z., Sankaranarayanan, V. N. (1970). Production of particulate matter by the reef of Kavaratti atoll (Laccadives). Limnol. Oceanogr. 15: 574–578Google Scholar
  45. Rassoulzadegan, F. (1977). Evolution annuelle des ciliés pélagiques en Méditerranée nord-occidentale. Annls Inst. océanogr., Paris 53: 125–134Google Scholar
  46. Revelante, N., Gilmartin, M. (1983). Microzooplankton distribution in the northern Adriatic Sea with emphasis on the relative abundance of ciliated protozoans. Oceanol. Acta 6: 407–415Google Scholar
  47. Ryther, J. H. (1956). The measurement of primary production. Limnol. Oceanogr. 1: 72–84Google Scholar
  48. Ryther, J. H., Yentsch, C. S. (1957). The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol. Oceanogr. 2: 281–326Google Scholar
  49. Sammarco, R. W., Crenshaw, H. (1984). Plankton community dynamics of the central Great Barrier Reef Lagoon: analysis of data from Ikeda et al.. Mar. Biol. 82: 167–180Google Scholar
  50. Sheldon, R. W., Nival, P., Rassoulzadegan, F. (1986). An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol. Oceanogr. 31: 184–188Google Scholar
  51. Sherr, B. F., Sherr, E. B. (1983). Double-staining epifluorescence technique to assess frequency of dividing cells and bacterivory in natural populations of heterotrophic microprotozoa. Appl. envirl Microbiol. 46: 1388–1393Google Scholar
  52. Sherr, B. F., Sherr, E. B., Berman, T. (1982). Decomposition of organic detritus: a selective role for microflagellate Protozoa. Limnol. Oceanogr. 27: 765–769Google Scholar
  53. Sherr, B. F., Sherr, E. B., Newell, S. Y. (1984). Abundance and productivity of heterotrophic nanozooplankton in Georgian coastal waters. J. Plankton Res. 6: 195–202Google Scholar
  54. Sherr, E. B., Sherr, B. F. (1987). High rates of consumption of bacteria by pelagic ciliates. Nature, Lond. 325: 710–711Google Scholar
  55. Sherr, E. B., Sherr, B. F., Fallon, R. D., Newell, S. Y. (1986). Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31: 177–183Google Scholar
  56. Stocker, D. K., Sanders, N. K. (1985). Differential grazing by Acartia tonsa on a dinoflagellate and a tintinnid. J. Plankton Res. 7: 85–100Google Scholar
  57. Takahashi, M., Kikuchi, K., Hara, Y. (1985). Importance of picocyanobacteria biomass (unicellular, blue-green algae) in the phytoplankton population of the coastal waters off Japan. Mar. Biol. 89: 63–69Google Scholar
  58. Taniguchi, A., Kawakami, R. (1983). Growth rates of ciliates Eutinnus lusundae and Favella taraikaensis observed in laboratory culture experiments. Bull. Plankton Soc. Japan 24: 1–10Google Scholar
  59. Waterbury, J. B., Watson, S. W., Guillard, R. R. L., Brand, L. E. (1979). Widespread occurrence of a unicellular, marine cyanobacterium. Nature, Lond. 277: 293–294Google Scholar
  60. Winn, C., Karl, D. (1984). Microbial productivity and community growth rate estimates in the tropical North Pacific Ocean. Biol. Oceanogr. 3: 123–145Google Scholar
  61. Yentsch, C. S., Menzel, D. W. (1963). A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221–231Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. Blanchot
    • 1
  • L. Charpy
    • 2
  • R. Le Borgne
    • 1
  1. 1.Centre ORSTOMNouméa CedexNew Caledonia
  2. 2.Centre ORSTOMPapeeteTahiti, French Polynesia

Personalised recommendations