Advertisement

Archives of Microbiology

, Volume 102, Issue 1, pp 275–279 | Cite as

Physiological role for the membrane bound ascorbate-TMPD Oxidase in Pseudomonas putida

  • Martin V. Jones
Short Communications

Abstract

The activity of the membrane-bound ascorbate-TMPD oxidase in Pseudomonas putida varies with growth conditions and age of the culture. A comparison of the effects of cyanide and azide on the oxidation of various substrates suggests that ascorbate-tMPD oxidase is not the terminal oxidase for NADH or succinate oxidation. Nowever, it does have a role in the oxidation of nicotinate, and may act as an additional terminal oxidase under certain other growth conditions.

Key words

Ascorbate-TMPD Oxidase Cyanide Inhibition Cytochrome c Oxidase Pseudomonas putida 

Non-Standard Abbreviations

TMPD

NN N′N′-Tetramethyl-p-phenylene diamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheah, K.S.: The membrane bound ascorbate oxidase system of Halobacterium halobium. Biochim. biophys. Acta (Amst.) 205, 148–160 (1970)Google Scholar
  2. Erickson, S.K., Diehl, H.: The terminal oxidases of Azotobacter vinelandii. Biochem. biophys. Res. Commun. 50, 321–327 (1973)Google Scholar
  3. Jones, C.W.: The inhibition of Azotobacter vinelandii terminal oxidases by cyanide. FEBS Letters 36, 347–350 (1973)Google Scholar
  4. Jones, M.V.: Nicotinic acid oxidase. A study of a membrane bound enzyme system. Ph. D. Thesis, University of Wales (1973a)Google Scholar
  5. Jones, M.V.: Cytochrome c linked nicotinic acid hydroxylase in Pseudomonas ovalis Chester. FEBS Letters 32, 321–324 (1973b)Google Scholar
  6. Jones, M.V., Hughes, D.E.: The oxidation of nicotinic acid by Pseudomonas ovalis Chester. The terminal oxidase. Biochem. J. 129, 755–761 (1972)Google Scholar
  7. Jurtshuk, P., Aston, P.R., Old, L.: Enzymic oxidation of tetramethyl p-phenylene diamine and p-phenylene diamine by the electron transport fraction of Azotobacter vinelandii. J. Bact. 93, 1069–1078 (1967)Google Scholar
  8. Kauffman, H.F., Van Gelder, B.F.: The respiratory chain of Azotobacter vinelandii. III. The effect of cyanide in the presence of substrates. Biochim. biophys. Acta (Amst.) 333, 218–227 (1974)Google Scholar
  9. Kemp, M.B., Garland, P.B.: Kinetic studies of electron transport in aerobically-grown Pseudomonas aeruginosa. Proc. Soc. gen. Microbiol. 1, 47 (1974)Google Scholar
  10. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurements with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  11. Meyer, D.J., Jones, C.W.: Distribution of cytochromes in bacteria: Relationship to general physiology. Int. J. Syst. Bact. 23, 459–467 (1973)Google Scholar
  12. Stanier, R.Y., Palleroni, N.J., Doudoroff, M.: The aerobic Pseudomonads: A taxonomic survey. J. gen. Microbiol. 43, 159–271 (1966)Google Scholar
  13. Yamanaka, T., Okunuki, K.: Crystalline Pseudomonas cytochrome oxidase. I. Enzymic properties with special reference to biological specificity. Biochim. biophys. Acta (Amst.) 67, 379–393 (1963)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Martin V. Jones
    • 1
  1. 1.School of Biological SciencesUniversity of East AngliaNorwich

Personalised recommendations