Archives of Microbiology

, Volume 102, Issue 1, pp 233–240 | Cite as

Adenine nucleotide pool variations in intact Nitrobacter winogradskyi cells

  • Ulrich Eigener
Short Communications

Abstract

  1. 1.

    The ATP pool in Nitrobacter winogradskyi cells was determined by means of the luciferin-luciferase enzyme system and the ADP and AMP pools were measured after enzymatic conversion into ATP.

     
  2. 2.

    In the fist 10 min after addition of nitrite to endogenously respiring cells, which had stood for 5–16 days after completion of the nitrite oxidation, the ATP pool dropped about 60%.

     
  3. 3.

    During the log phase the ATP pool was approx. 20–40 pmoles/5 μg cell-N. During growth it increased exponentially by 3–4 times the amount until the nitrite had been used up. Subsequently the ATP pool decreased at first rapidly and then more slowly without sinking to 0 in the first 2 months after nitrification.

     
  4. 4.

    Nitrite oxidizing cells had an energy charge of 0.37 during the log-phase. After approx. 90% of the substrate had been used up the energy charge had reached 0.57.

     
  5. 5.

    If the CO2 assimilation was inhibited in growing cultures by increased oxygen partial pressure, nitrite oxidation continued but the ATP pool increased.

     
  6. 6.

    The ATP pool and the activity of the endogenous respiration decreased by more than 50% during the first hours after the substrate had been used up.

     

Key words

Nitrobacter Adenine Nucleotides Endogenous Respiration Energy Charge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleem, M.I.H.: Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis Biochim. biophys. Acta (Amst.) 162, 338–347 (1968)Google Scholar
  2. Atkinson, D.E., Walton, M.: Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J. biol. Chem. 242, 3239–3241 (1967)Google Scholar
  3. Bock, E.: pH-metrische Bestimmung der oxidativen Phosphorylierung bei Ganzzellen von Nitrobacter winogradskyi Buch. Arch. Mikrobiol. 58, 169–180 (1967)Google Scholar
  4. Bock, E., Engel, H.: Untersuchungen über postoxidative CO2-Fixierung bei Nitrobacter winogradskyi Buch. Arch. Mikrobiol. 69, 149–159 (1966)Google Scholar
  5. Bock, E., Heinrich, G.: Morphologische und physiologische Untersuchungen an Zellen von Nitrobacter winogradskyi Buch. Arch. Mikrobiol. 69, 149–159 (1969)Google Scholar
  6. Bomsel, Y.-L., Pradet, A.: Study on adenosine 5′-mono, di-and triphosphates in plant tissues. IV. Regulation of the level of nucleotides, in vivo, by adenylate kinase: theoretical and experimental study. Biochim. biophys. Acta (Amst.) 162, 230–242 (1968)Google Scholar
  7. Chapman, A.G., Fall, L., Atkinson, D.E.: Adenylate energy charge in Escherichia coli during growth and starvation. J. Bact. 108, 1072–1086 (1971)Google Scholar
  8. Cole, H. A., Wimpenny, J.W.T., Hughes, D.E.: The ATP-pool in Escherichia coli. 1. Measurement of the pool using a modified luciferase assay. Biochim. biophys. Acta (Amst.) 143, 445–453 (1967)Google Scholar
  9. Eigener, U., Bock, E.: Auf-und Abbau der Polyphosphat-fraktion in Zellen von Nitrobacter winogradskyi Buch. Arch. Mikrobiol. 81, 367–378 (1972)Google Scholar
  10. Fischer, I., Laudelout, H.: Differential P/O ratio in Nitrobacter. Biochim. biophys. Acta (Amst.) 110, 204–206 (1965)Google Scholar
  11. Forrest, W.W.: Adenosine triphosphate pool during the growth cycle in Streptococcus faecalis. J. Bact. 90, 1013–1018 (1965)Google Scholar
  12. Gadkari, D., Stolp, H.: Influence of nitrogen source on growth and nitrogenase activity in Azotobacter vinelandii. Arch. Microbiol. 96, 135–144 (1974)Google Scholar
  13. Holms, W.H., Hamilton, I.D., Robertson, A.G.: The rate of turnover of the adenosine triphosphate pool of Escherichia coli growing aerobically in simple defined media. Arch. Mikrobiol. 83, 95–109 (1972)Google Scholar
  14. Johnson, E.J.: Occurrence of the adenosine monophosphate inhibition of carbon dioxide fixation in photosynthetic and chemosynthetic autotrophs. Arch. Biochem. Biophys. 114, 178–183 (1966)Google Scholar
  15. Kalbhen, D.A., Koch, H.J.: Methodische Untersuchungen zur quantitativen Mikrobestimmung von ATP in biologischem Material mit dem Firefly-Enzymsystem. Z. klin. Chem. u. klin. Biochem. 5, 299–304 (1967)Google Scholar
  16. Kelly, D.P., Syrett, P.J.: Energy coupling during sulphur compound oxidation by Thiobacillus sp. Strain C. J. gen. Microbiol. 43, 109–118 (1966)Google Scholar
  17. Knowles, C.J., Smith, L.: Measurements of ATP levels of intact Azotobacter vinelandii under different conditions. Biochim. biophys. Acta (Amst.) 197, 152–160 (1970)Google Scholar
  18. Lazdunski, A., Belaich, J.P.: Uncoupling in bacterial growth: ATP pool variations in Zymomonas mobilis cells in relation to different uncoupling conditions of growth. J. gen. Microbiol. 70, 187–197 (1972)Google Scholar
  19. Mayeux, J.V., Johnson, E.J.: Effect of adenosine monophosphate, adenosine diphosphate, and reduced nicotine-amide adenine dinucleotide on adenosine thriphosphate-dependent carbon dioxide fixation in the autotroph Thiobacillus neapolitanus. J. Bact. 94, 409–414 (1967)Google Scholar
  20. Miović, M.L., Gibson, J.: Nucleotide pools and adenylate energy charge in balanced and unbalanced growth of Chromatium. J. Bact. 114, 86–95 (1973)Google Scholar
  21. Pradet, A.: Étude des adénosine-5′-mono, di- et tri-phosphates dans les tissues végétaux. I. Dosage enzymatique. Physiol. Vég. 5, 209–221 (1967)Google Scholar
  22. Rittenberg, S.C.: The obligate autotroph—the demise of a concept. Antonie v. Leeuwenhoek 38, 457–478 (1972)Google Scholar
  23. Schlegel, H.G.: Allgemeine Mikrobiologie. Stuttgart: Thieme 1972Google Scholar
  24. Schön, G.: Untersuchungen über den Nutzeffekt bei Nitrobacter winogradskyi Buch. Dissertation, Universität Hamburg (1964)Google Scholar
  25. Schön, G.: Der Einfluß der Kulturbedingungen auf den ATP-, ADP- und AMP-Spiegel bei Rhodospirillum rubrum. Arch. Mikrobiol. 66, 348–364 (1969)Google Scholar
  26. Strauch, L.: Ultramikro-Methode zur Bestimmung des Stickstoffs in biologischem Material. Z. klin. Chem. 3, 165–167 (1965)Google Scholar
  27. Strehler, B.L., Trotter, J.R.: Firefly luminescence in the study of energy transfer mechanisms. I. Substrate and enzyme determination. Arch. Biochem. Biophys. 40, 28–41 (1952)Google Scholar
  28. Wallace, W., Nicholas, D.J.D.: The biochemistry of nitrifying microorganisms. Biol. Rev. 44, 359–391 (1969)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Ulrich Eigener
    • 1
  1. 1.Institut für Allgemeine Botanik der Universität HamburgHamburgGermany

Personalised recommendations