Marine Biology

, Volume 102, Issue 2, pp 189–193 | Cite as

Effect of salinity on hemolymph calcium concentration during the molt cycle of the prawn Penaeus monodon

  • F. D. Parado-Estepa
  • J. M. Ladja
  • E. G. de Jesus
  • R. P. Ferraris


Prawns (Penaeus monodon) were obtained from ponds in Iloilo, Philippines, in 1984 and 1985 and maintained in salinities from 8 to 44‰. Total hemolymph calcium was largely affected by molt stage and less so by salinity. A sharp, transient increase in hemolymph calcium occurred 3 to 6 h postmolt, followed by an equally rapid decrease from 6 h postmolt to intermolt. This biphasis response was limited to prawns in 8, 20 and 32‰S; in 44‰S, hemolymph calcium remained the same throughout the sampling period. Peak concentrations of total calcium were greater in low (8 and 20‰S) than in high salinities. Salinity had no effect on the duration of molt cycle nor on time of occurrence of molt. Almost half of molting incidents occurred between 18.01 and 0.00 hrs, and one-third between 0.01 and 06.00 hrs.


Calcium Peak Concentration Sampling Period Calcium Concentration High Salinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Apud, F., Primavera, J., Torres, P. (1983). Farming of prawns and shrimps. Southeast Asian Fisheries Development Center, Iloilo, Philippines (Extension Manual No. 5)Google Scholar
  2. Bittner, G. D., Kopanda, R. (1973). Factors influencing molting in the crayfish Procambarus clarkii. J. exp. Zool. 186: 7–16Google Scholar
  3. Central Inland Fisheries Research Institute (CIFRI) (1977). Revised notes on the methodology for culture of Penaeus monodon. CIFRI, Barrackpore, India, p. 1–17. (Contrib. No. 10)Google Scholar
  4. Charmantier, G., Thuet, P., Charmantier-Daures, M. (1984). La regulation osmotique et ionique chez Homarus gammarus (L.) (Crustacea: Decapoda). J. exp. mar. Biol. Ecol. 76: 191–199Google Scholar
  5. Dall, W. (1965). Studies on the physiology of a shrimp: Metapenaeus sp. V. Calcium metabolism. Aust. J. mar. Freshwat. Res. 16: 181–203Google Scholar
  6. Ferraris, R. P., Parado-Estepa, F. D., de Jesus, E. G., Ladja, J. M. (1987). Osmotic and chloride regulation in the hemolymph of the tiger prawn Penaeus monodon during molting in various salinities. Mar. Biol. 95: 377–386Google Scholar
  7. Ferraris, R. P., Parado-Estepa, F. D., Ladja, J. M., de Jesus, E. G. (1986). Effect of salinity on the osmotic, chloride, total protein and calcium concentrations in the hemolymph of the prawn Penaeus monodon (Fabricius). Comp. Biochem. Physiol. 83A: 701–708Google Scholar
  8. Fieber, L. A., Lutz, P. L. (1985). Magnesium and calcium metabolism during molting in the freshwater prawn Macrobrachium rosenbergii. Can. J. Zool. 63: 1120–1124Google Scholar
  9. Graf, F. (1978). Les sources de calcium pour les crustaces venant de muer. Archs Zool. exp. gén. 119: 143–161Google Scholar
  10. Greenaway, P. (1974). Calcium balance at the premolt stage of the freshwater crayfish Austropotamobius pallipes (Lereboullet). J. exp. Biol. 61: 27–43Google Scholar
  11. Greenaway, P. (1983). Uptake of calcium at the postmolt stage by the marine crabs Callinectes sapidus and Carcinus maenas. Comp. Biochem. Physiol. 75A: 181–184Google Scholar
  12. Haefner, P. A. (1964). Hemolymph calcium fluctuations as related to environmental salinity during ecdysis of the blue crab, Callinectes sapidus Rathbun. Physiol. Zoöl. 37: 247–258Google Scholar
  13. Hagerman, L. (1973). Ionic regulation in relation to the moult cycle of Crangon vulgaris (Fabr.) (Crustacea, Natantia) from brackishwater. Ophelia 12: 141–149Google Scholar
  14. Hartley, H. O. (1961). The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares. Technometrics 3: 269–280Google Scholar
  15. Hartnoll, R. G. (1978). The effect of salinity and temperature on the postlarval growth of the crab Rithropanopeus harrissii. In: McClusky, D. S., Berry, A. J. (eds.) Physiology and behaviour of marine organisms. Pergamon Press. Oxford, p. 349–358Google Scholar
  16. Henry, R. O., Kormanik, G. A. (1985). Carbonic anhydrase activity and calcium deposition during the molt cycle of the blue crab Callinectes sapidus. J. Crustacean Biol. 5: 234–241Google Scholar
  17. Huner, J. V., Colvin, L. B., Reid, B. L. (1979). Whole-body calcium, magnesium and phosphorus levels of the california brown shrimp, Penaeus californiensis (Decapoda: Penaeidae) as functions of molt stage. Comp. Biochem. Physiol. 64A: 33–36Google Scholar
  18. Ling, S. W., Merican, A. B. O. (1961). Notes on the life cycle and habits of the adult and larval stages of Macrobrachium rosenbergii (De Man). Proc. Indo-Pacific. Fish. Coun. 9: 55–61Google Scholar
  19. Mantel, L., Farmer, L. (1983). Osmotic and ionic regulation. In: Bliss, D. E. (ed.) The biology of Crustacea. Vol. 5. Academic Press, New York, p. 53–161Google Scholar
  20. McFarland, W., Lee, B. (1963). Osmotic and ionic concentrations of penaeidean shrimps of the Texas coast. Bull. mar. Sci. Gulf Caribb. 13: 391–417Google Scholar
  21. Parado-Estepa, F. D., Ferraris, R. P., Ladja, J. M., de Jesus, E. G. (1987). Responses of intermolt Penaeus indicus to large fluctuations in environmental salinity. Aquaculture, Amsterdam 64: 175–184Google Scholar
  22. Price-Sheets, W. C., Dendinger, J. E. (1983). Calcium deposition into the cuticle of the blue crab, Callinectes sapidus related to external salinity. Comp. Biochem. Physiol. 74A: 903–907Google Scholar
  23. Robertson, J. D. (1960). Osmotic and ionic regulation. In: Waterman, T. H. (ed.) Crustacean physiology. Academic Press, New York, p. 317–339Google Scholar
  24. Tagatz, M. E. (1968). Growth of the juvenile blue crabs, Callinectes sapidus Rathbun in the St. John River, Florida. Fish. Bull. U.S. 67: 281–288Google Scholar
  25. Travis, D. F. (1955). The molting cycle of the spiny lobster, Panulirus argus Latreille. III. Physiological changes which occur in the blood and urine during the normal molting cycle. Biol. Bull. mar. biol. Lab., Woods Hole 109: 484–503Google Scholar
  26. Vernet-Cornubert, G. (1964). Comparaison entre les effets provoqués par l'epedonculation et par la regeneration intensive sur la mue et la croissance chez Pachygrapsus marmoratus (Fabricius). Bull. Inst. océanogr. Monaco 61: 1–20Google Scholar
  27. Wright, D. A. (1979). Calcium regulation in intermolt Gammarus plexus. J. exp. Biol. 83: 131–144Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • F. D. Parado-Estepa
    • 1
  • J. M. Ladja
    • 1
  • E. G. de Jesus
    • 2
  • R. P. Ferraris
    • 3
  1. 1.Aquaculture DepartmentSoutheast Asian Fisheries Development CenterIloiloPhilippines
  2. 2.Laboratory of Physiology, Ocean Research InstituteUniversity of TokyoNakano, TokyoJapan
  3. 3.Department of Physiology, School of MedicineUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations