, Volume 85, Issue 3, pp 323–328 | Cite as

Chronic neuroleptic treatment and mesolimbic dopamine denervation induce behavioural supersensitivity to opiates

  • L. Stinus
  • M. Winnock
  • A. E. Kelley
Original Investigations


In the present study the functional relationship between enkephalinergic and dopaminergic neurones at the level of the nucleus accumbens was investigated. The study consisted of two experiments in which dopaminergic (DA) transmission was chronically inhibited, and the behavioural locomotor response to intra-accumbens opiate injections analysed. First, specific 6-OHDA lesion of the DA-A10 neurones (either in nucleus accumbens or ventral tegmental area) was found markedly to increase the behavioural excitatory effects induced by nucleus accumbens injection of opioid peptides or morphine. Specific lesion of the central noradrenergic neurones had no such effect. Second, chronic pharmacological blockade of DA activity either with reserpine or a neuroleptic (pipothiazine palmitate) similarly induced a strong enhancement of the behavioral response to intra-accumbens opiate injection. The results are discussed in terms of novel mechanisms underlying denervation supersensitivity, and may have important implications for the relation between dopamine dysfunction in mental illness and opiate addiction.

Key words

Opiates Nucleus accumbens Supersensitivity Chronic neuroleptic 6-OHDA lesion Mesolimbic dopamine neurones Rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atweh SF, Kuhar MJ (1977a) Autoradiographic localization of opiate receptors in rat brain. II The brain stem. Brain Res 129: 1–12Google Scholar
  2. Atweh SF, Kuhar MJ (1977b) Autoradiographic localization of opiate receptors in rat brain. III The telencephalon. Brain Res 134: 393–405Google Scholar
  3. Bozarth MA, Wise RA (1981) Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci 28: 551–555Google Scholar
  4. Broekkamp CLE, Phillips AG, Cools AR (1979) Stimulant effects of enkephalin microinjection into the dopaminergic A10 area. Nature 278: 560–562Google Scholar
  5. Carlsson A, Rosengreen e, Bertler A, Nilsson T (1957) Effect of reserpine on the metabolism of catecholamines. In: Garattini S, Ghetti V (eds) Psychotropic drugs. Elsevier, Amsterdam, pp 363–370Google Scholar
  6. Goeders NE, Lane JD, Smith JE (1983) Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol Biochem Behav 20: 451–455Google Scholar
  7. Holzbauer M, Vogt M (1956) Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J Neurochem 1: 8–11Google Scholar
  8. Hong JS, Yang HYT, Fratta W, Costa E (1977) Determination of methionine enkephalin in discrete regions of rat brain. Brain Res 134: 383–386Google Scholar
  9. Hong JS, Yang HYT, Fratta W, Costa E (1978) Rat striatal methionine-enkephalin content after chronic treatment with cataleptogenic and non-cataleptogenic antischizophrenia drugs. J Pharmacol Exp Ther 205: 141–147Google Scholar
  10. Hong JS, Yang HYT, Gillin IC, di Guilio AM, Fratta W, Costa E (1979) Chronic treatment with haloperodol accelerates the biosynthesis of enkephalins in rat brat. Brain Res 160: 192–195Google Scholar
  11. Johnson RP, Sar M, Stumpf WE (1980) A topographic localization of enkephalin on the dopamine neurons of the rat substantia nigra and ventral tegmental area demonstrated by combined histofluorescence-immunohistochemistry. Brain Res 194: 566–571Google Scholar
  12. Joyce EM, Iversen SD (1979) The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous activity in the rat. Neurosci Lett 14: 207–212Google Scholar
  13. Kalivas PW, Widerlov E, Stanley D, Breese G, Prange AJ (1983) Enkephalin action on the mesolimbic system a dopamine-dependent and a dopamine-independent increase in locomotor activity. J Pharmacol Exp Ther 227: 227–237Google Scholar
  14. Kato N, Shah KR, Friesen HG, Havlicek V (1981) Effect of chronic treatment with haloperidol on serum prolactin, striatal opiate receptors and β-endorphin content in rat brain and pituitary. Prog Neuro-Psychopharmacol 5: 549–552Google Scholar
  15. Kelley AE, Stinus L, Iversen SD (1980) Interaction between d-ala-met-enkephalin, A10 dopaminergic neurones, and spontaneous behaviour in the rat. Behav Brain Res 1: 3–24Google Scholar
  16. Kostrzewa RM, Jacobowitz DM (1974) Pharmacological actions of 6-hydroxydopamine. Pharmacol Rev 26: 199–288Google Scholar
  17. La Motte CC Snowman A, Pert CC, Snyder SH (1978) Opiate receptor binding in rhesus monkey brain: association with limbic structures. Brain Res 155: 374–379Google Scholar
  18. Pert CB, Pert A, Chang JK, Fong BTW (1976) D-ala-met-enkephalinamide: a potent long-lasting synthetic pentapeptide analgesic. Science 194: 330–332Google Scholar
  19. Pert CB, Sivit C (1977) Neuroanatomical focus for morphine and enkephalin induced hypermotility. Nature 265: 645–647Google Scholar
  20. Phillips AG, Le Piane FG (1980) Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacol Biochem Behav 12: 965–968Google Scholar
  21. Phillips AG, Le Piane FG, Fibiger HC (1983) Dopaminergic mediation of reward produced by direct injection of enkephalin into the ventral tegmental area. Life Sci 33: 2505–2511Google Scholar
  22. Pollard H, Llorens-Cortes C, Bennett JJ, Constantin J, Schwartz JC (1977a) Opiate receptors on mesolimbic dopaminergic neurons. Neurosci Lett 7: 295–299Google Scholar
  23. Pollard H, Llorens-Cortes C, Schwartz (1977b) Enkephalin receptors on dopaminergic neurons in rat striatum. Nature 268: 745–747Google Scholar
  24. Rounsaville BJ, Weissman MM, Kleber H, Wilber C (1982a) Heterogeneity of psychiatric diagnosis in treated opiate addicts. Arch Gen Psychiatry 39: 161–166Google Scholar
  25. Rounsaville BJ, Weissman MM, Crits-Christoph K, Wilber C, Kleber H (1982b) Diagnosis and symptoms of depression in opiate addicts. Arch Gen Psychiatry 39: 151–156Google Scholar
  26. Scatton B, Garret C, Glowinski J, Julou L (1975) Effect of long-acting injectable neuroleptic (the palmitic ester of pipothiazine) on dopamine metabolism in the rat striatum. In: Boissier JR, Hippuis H, Pichot P (eds) Neuropsychopharmacology. Proceedings of the IX Congress of the CINP Paris 1974, Amsterdam Exc Med, pp 472–479Google Scholar
  27. Scatton B, Boireau A, Garret C, Glowinski J, Julou L (1977) Action of palmitic ester of pipothiazine on dopamine metabolism in the nigro-striatal, meso-limbic and meso-cortical systems. Naunyn-Schmiedeberg's Arch Pharmacol 296: 169–175Google Scholar
  28. Schildkraut JJ (1978) Current status of the catecholamine hypothesis of affective disorders. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: A generation of progress, Raven Press, New York, pp 1223–1234Google Scholar
  29. Seeman P (1981) Brain dopamine receptors. Pharmacol Rev 32: 229–313Google Scholar
  30. Stinus L, Koob GF, Ling N, Bloom FE, Le Moal M (1980) Locomotor activation induced by infusion of endorphins into the ventral tegmental area: evidence for opiate-dopamine interactions. Proc Natl Acad Sci (USA) 77: 2323–2327Google Scholar
  31. Tang F, Schwartz JP, Costa E (1983) Increase of proenkephalin mRNA and enkephalmin content of rat striatum following daily injection of haloperidol for two to three weeks. Proc Natl Acad Sci (USA) 80: 3841–3844Google Scholar
  32. Taquet H, Javoy-Agid F, Hamon M, Le Grand JC, Agid Y, Cesselin F (1983) Parkinson's disease affects differently met-5-enkephalin and leu-5-enkephalin in the human brain. Brain Res 280: 375–382Google Scholar
  33. Tarsy D, Baldessarini RJ (1973) Pharmacologically induced behavioural supersensitivity to apomorphine. Nature 245: 262–263Google Scholar
  34. Thal LJ, Sharpless NS, Hirschhorn ID, Horowitz SG, Makman MH (1983) Striatal met-enkephalin concentration increases following nigrostriatal denervation Biochem Pharmacol 32: 3297–3301Google Scholar
  35. Trujillo KA, Belluzi JD, Stein L (1983) Endorphin-catecholamine interactions in nucleus accumbens self-administration. Abstracts Soc Neurosci 9: 277Google Scholar
  36. Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxy dopamine induced degeneration of the nigro-striatal dopamine system in the rat brain. Acta Physiol Scand Suppl 367: 69–73Google Scholar
  37. Van Der Kooy D, Mucha RF, O'Shaughnessy M, Bucenieks P (1982) Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Res 243: 107–117Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • L. Stinus
    • 1
  • M. Winnock
    • 1
  • A. E. Kelley
    • 1
  1. 1.Psychobiologie des Comportements INSERM Unité 259Université de Bordeaux IIBordeaux CedexFrance

Personalised recommendations