Advertisement

Archives of Microbiology

, Volume 127, Issue 2, pp 105–114 | Cite as

Parameters of unbalanced growth and reversible inhibition of deoxyribonucleic acid synthesis in Brevibacterium ammoniagenes ATCC 6872 induced by depletion of Mn2+. Inhibitor studies on the reversibility of deoxyribonucleic acid synthesis

  • Georg Auling
  • Martin Thaler
  • Hans Diekmann
Article

Abstract

Unbalanced growth induced by depletion of manganese ions was a prerequisite for production of ribonucleotides in a high salt mineral medium with the wildtype strain Brevibacterium ammoniagenes ATCC 6872. The concentration of manganese strictly controlled the overall deoxyribonucleic acid (DNA) synthesis, whereas ribonucleic acid (RNA), protein and cell wall synthesis remained essentially unimpaired in the manganese-lacking cells.

The reversibility of inhibition of overall DNA synthesis was shown by enhanced incorporation (up to threefold compared to the cultures supplied with sufficient manganese) of [8-14C] adenine into alkali-stable, trichloroacetic acid-insoluble material after subsequent addition of 10 μM MnCl2 to 15 h-old depleted cultures.

The results of inhibitor studies on the restoration of overall DNA synthesis due to subsequent addition of manganese ions to depleted cultures suggest that ribonucleotide reduction is the primary target of the manganese starvation during nucleotide fermentation with Brevibacterium ammoniagenes ATCC 6872.

Key words

Manganese deficiency Unbalanced growth Brevibacterium ammoniagenes Reversible inhibition of DNA synthesis Inhibition by hydroxyurea Mn2+-Controlled ribonucleotide reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Sternglanz, R.: Recent excitement in the DNA replication problem. Nature 269, 655–661 (1977)Google Scholar
  2. Auling, G., Diekmann, H.: Letales unbalanciertes Wachstum durch Manganmangel bei Brevibacterium ammoniagenes. Hoppe Seylers Z. Physiol. Chem. 360, 228 (1979)Google Scholar
  3. Auling, G., Follmann, H.: Manganabhängigkeit der Ribonucleotid-Reduktion: Ursache des unbalancierten Wachstums bei der Ribonucleotid-Fermentation mit Brevibacterium ammoniagenes. Hoppe Seylers Z. Physiol. Chem. 361, 214 (1980)Google Scholar
  4. Bazil, G. W.: Lethal unbalanced growth in bacteria. Nature 216, 346–349 (1967)Google Scholar
  5. Brendel, M., Langjahr, U. G.: “Thymineless death” in a strain of Saccharomyces cerevisiae auxotrophic for deoxythymidine-5′-monophosphate. Mol. Gen. Genet. 131, 351–358 (1974)Google Scholar
  6. Burton, D.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315–322 (1956)Google Scholar
  7. Cohen, S. S., Barner, H. D.: Studies on unbalanced growth in Escherichia coli. Proc. Natl. Acad. Sci. USA 40, 885–893 (1954)Google Scholar
  8. Coultas, M. K., Hutchison, D. H.: Metabolism of resistant mutants of Streptococcus faecolis. IV. Use of a biophotometer in growthcurve studies. J. Bacteriol. 84, 393–401 (1962)Google Scholar
  9. Cowles, J. R., Evans, H. J., Russel, S. A.: B12 Coenzyme-dependent ribonucleotide reductase in Rhizobium species and the effects of cobalt deficiency on the activity of this enzyme. J. Bacteriol. 97, 1460–1465 (1969)Google Scholar
  10. Davis, B. D., Mingioli, E. S.: Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bacteriol. 60, 17–28 (1950)Google Scholar
  11. Eisenstadt, E., Fisher, S., Der, C. L., Silver, S.: Manganese transport in Bacillus subtilis W23 during growth and sporulation. J. Bacteriol. 113, 1363–1372 (1973)Google Scholar
  12. Feller, W.: Ribonucleotidreductase in synchronisierten 5-Fluordesoxyuridin-stimulierten Zellen der Grünalge Scenedesmus obliquus. Thesis, University of Marburg (1979)Google Scholar
  13. Filpula, D., Fuchs, J. A.: Regulation of the synthesis of ribonucleoside diphosphate reductase in Escherichia coli: specific activity of the enzyme in relationship to perturbations of DNA replication. J. Bacteriol. 135, 429–435 (1978)Google Scholar
  14. Filpula, D., Fuchs, J. A.: Increased synthesis of ribonucleotide reductase after deoxyribonucleic acid inhibition in various species of bacteria. J. Bacteriol. 139, 694–696 (1979)Google Scholar
  15. Follmann, H.: Die enzymatische Ribonucleotid-Reduktion: Biosyntheseweg der Desoxyribonucleotide. Angew. Chem. 86, 624–634 (1974); [Int. Ed. 13, 569–579 (1974)]Google Scholar
  16. Hanson, R. K., Kennedy, E. P.: Energy-transducing adenosine triphosphatase from Escherichia coli. Purification, properties and inhibition by antibody. J. Bacteriol. 113, 772–781 (1973)Google Scholar
  17. Hatree, E. F.: Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422–427 (1972)Google Scholar
  18. Honjo, T.: Nicotinate phosphoribosyltransferase from baker's yeast. In: Methods in enzymology, vol. XVIIIB. (D. B. McCormick and L. D. Wright, eds.), pp. 123–127. New York, London: Academic Press 1971Google Scholar
  19. Kingsbury, D. T., Duncan, J. F.: Use of exogenous adenine to label the nucleic acids of wild-type Neisseria meningitidis. J. Bacteriol. 94, 1262–1263 (1967)Google Scholar
  20. Luft, J. H.: Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol 9, 409–414 (1961)Google Scholar
  21. Mohlberg, J., Rusch, H. P.: Growth of large plasmodia of the myxomycete Physarum polycephalum. J. Bacteriol. 97, 1411–1418 (1969)Google Scholar
  22. Ogata, K., Kinoshita, S., Tsunoda, T., Aika, K., eds.: Microbial production of nucleic acid-related substances. Tokyo: Kodanska, and New York, London, Sidney, Toronto, Wiley 1976Google Scholar
  23. Oka, T., Udagawa, K., Kinoshita, S.: Unbalanced growth death due to depletion of Mn2+ in Brevibacterium ammoniagenes. J. Bacteriol. 96, 1760–1767 (1968)Google Scholar
  24. Okorokov, L. A., Lichko, L. P., Kadomtseva, V. M., Kholodenko, V. P., Titivsky, V., Kulaev, I. S.: Energy-dependent transport of manganese into yeast cells and distribution of accumulated ions. Eur. J. Biochem. 75, 373–377 (1977)Google Scholar
  25. Shimada, S., Kuraisni, H., Aida, K.: Cell death produced by antibiotic cerulenin in biotin-requiring yeast Saccharomyces cerevisiae. Agric. Biol. Chem. 42, 1279–1281 (1978)Google Scholar
  26. Silver, S., Johnseine, P., King, K.: Manganese active transport in Escherichia coli. J. Bacteriol. 104, 1299–1306 (1970)Google Scholar
  27. Silver, S., Johnseine, P., Whitney, E., Clark, D.: Manganese-resistant mutants of Escherichia coli: Physiological and genetic studies. J. Bacteriol. 110, 186–195 (1972)Google Scholar
  28. Silver, S., Jasper, P.: Manganese transport in microorganisms, pp. 105–149. In: Microorganisms and minerals (E. D. Weinberg, ed.). New York, Basel: Marcel Dekker, Inc. 1977Google Scholar
  29. Silver, S. A., Yall, I., Sinclair, N. A.: Molecular basis for the maximum growth temperature of an obligately psychrophilic yeast, Leucosporidium stokesii. J. Bacteriol. 132, 676–680 (1977)Google Scholar
  30. Sinha, N. K., Snustad, D. P.: Mechanism of inhibition of deoxyribonucleic acid synthesis in Escherichia coli by hydroxyurea. J. Bacteriol. 112, 1321–1334 (1972)Google Scholar
  31. Thaler, M.: Veränderung der Membranzusammensetzung bei Brevibacterium ammoniagenes unter Manganmangel als Voraussetzung für die extrazelluläre Nukleotidsynthese. Thesis, University of Tübingen (1977)Google Scholar
  32. Thaler, M., Diekmann, H.: The effect of manganese deficiency on lipid content and composition in Brevibacterium ammoniagenes. Eur. J. Appl. Microbiol. Biotechnol. 6, 379–387 (1979)Google Scholar
  33. Yoshikawa, H., Murakami, S., Yamaguchi, K., Inuzaka, N., Murakami, S.: DNA replication cycle in bacteria with emphasis on regulation of initiation, pp. 37–58. In: Growth and differentiation in microorganisms (T. Ishikawa, Y. Maryama and H. Matsumiya, eds.). Baltimore, London, Tokyo: University Park Press 1977Google Scholar
  34. Yoshinaga, K.: Double strand scission of DNA involved in thymineless death of Escherichia coli 15 TAU. Biochim. Biophys. Acta 294, 204–213 (1973)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Georg Auling
    • 1
  • Martin Thaler
    • 1
  • Hans Diekmann
    • 1
  1. 1.Lehrgebiet für Mikrobiologie der Universität HannoverHannover 1Federal Republic of Germany

Personalised recommendations