Archives of Microbiology

, Volume 115, Issue 1, pp 95–102 | Cite as

On the specificity of the uridine diphospho-N-acetylmuramyl-alanyl-D-glutamic acid: Diamino acid ligase of Bifidobacterium globosum

  • Walter P. Hammes
  • Rosemarie Neukam
  • Otto Kandler
Article

Abstract

The peptidoglycan of Bifidobacterium globosum contains ornithine and lysine alternately in the same position of the peptide subunit. The uridine diphospho-N-acetylmuramyl-alanyl-D-glutamic acid: diamino acid ligase of this organism was purified 700-fold. Since the activities for the incorporation of ornithine and lysine into uridine diphospho-N-acetylmuramyl-tripeptide did not separate during purification and since the incorporation of ornithine is competitively inhibited by lysine and vice versa, both ornithine and lysine are assumed to be incorporated by one single enzyme. Studies on the specificity of the ligase toward analogs of ornithine have shown that the enzyme requires a diamino, monocarboxylic acid with 4–6 carbon atoms. Methylation of the ε-amino group or hydroxylation of the δ-carbon atom of lysine decreases the competitive properties of the analog, whereas the substitution of the γ-methylen group by sulfur (S-2-aminoethyl cysteine) results in a highly competitive compound.

Key words

Peptidoglycan Bifidobacterium Enzyme specificity 

Abbreviations

BSA

bovine serum albumine

MurNAc

N-acetyl-muramyl

DA

diamino acid

Ala-DGlu-γ-L-DA-DAla-D-Ala

pentapeptide

Ala-DGlu-γ-LDA

tripeptide

Ala-DGlu

dipeptide

DSM

Deutsche Sammlung von Mikroorganismen

CEM

clostridial enrichment medium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammes, W. P., Kandler, O.: Biosynthesis of peptidoglycan in Gaffkya homari. The incorporation of peptidoglycan into the cell wall and the direction of transpeptidation. Eur. J. Biochem. 70, 97–106 (1976)Google Scholar
  2. Hammes, W. P., Neuhaus, F. C.: On the specificity of phospho-N-acetylmuramyl-pentapeptide translocase. The peptide subunit of uridine diphosphate-N-acetylmuramyl-pentapeptide. J. Biol. Chem. 249, 3140–3150 (1974)Google Scholar
  3. Holzapfel, W., Scardovi, V., Kandler, O.: Die Aminosäuresequenz des Ornithin und Lysin enthaltenden Mureins einiger Stämme von Lactobacillus bifidus aus dem Pansen. Z. Naturforsch. 24b, 1524–1528 (1969)Google Scholar
  4. Ito, E., Strominger, J. L.: Enzymatic synthesis of the peptide in bacterial uridine nucleotides. III. Purification and properties of lysine adding enzyme. J. Biol. Chem. 239, 210–214 (1964)Google Scholar
  5. Kandler, O.: Amino acid sequence of the murein and taxonomy of the genera Lactobacillus, Bifidobacterium, Leuconostoc and Pediococcus. Int. J. Syst. Bacteriol. 20, 491–507 (1970)Google Scholar
  6. Koch, D., Schleifer, K. H., Kandler, O.: Die Aminosäuresequenz des Threonin und Serin enthaltenden Mureins von Bifidobacterium longum Reuter. Arch. Mikrobiol. 74, 315–325 (1970)Google Scholar
  7. Lauer, E., Kandler, O.: Mechanismus der Variation des Verhältnisses Acetat/Lactat bei der Vergärung von Glucose durch Bifidobakterien. Arch. Microbiol. 110, 271–277 (1976)Google Scholar
  8. Lipmann, F.: Attempts to map a process evolution of peptide biosynthesis. Synthesis of peptide antibiotics from thiol-linked amino acids parallels fatty acid synthesis. Science 173, 875–884 (1971)Google Scholar
  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  10. Mizuno, Y., Ito, E.: Purification and properties of uridine diphosphate N-acetylmuramyl-L-alanyl-D-glutamate: meso-2,6-diamino pimelate ligase. J. Biol. Chem. 243, 2665–2672 (1968)Google Scholar
  11. Neuhaus, F. C., Struve, W. G.: Enzymatic synthesis of analogs of the cell wall precursor. I. Kinetics and specificity of uridine diphospho-N-acetylmuramyl-L-alanyl-D-glutamyl-L-lysine: D-alanyl-D-alanine ligase (adenosine diphosphate) from Streptococcus faecalis R. Biochemistry 4, 120–131 (1965)Google Scholar
  12. Rabinovitz, M., Tuve, R. K.: Antimetabolite activity of lysine analogues on lysine incorporation into rat bone marrow protein in vitro. Proc. Soc. Exp. Biol. Med. 100, 222–224 (1959)Google Scholar
  13. Schleifer, K. H., Kandler, O.: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477 (1972)Google Scholar
  14. Shiota, T., Folk, J. E., Tietze, F.: Inhibition of lysine utilization in bacteria by S-(β-aminoethyl)-cysteine and its reversal by lysine peptides. Arch. Biochem. Biophys. 77, 372–377 (1958)Google Scholar
  15. Strominger, J. L.: Biosynthesis of bacterial cell walls. In: The bacteria, Vol. III (I. C. Gunsalus, R. Y. Stanier, eds.), pp. 413–470 New York-London: Academic Press 1962Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Walter P. Hammes
    • 1
  • Rosemarie Neukam
    • 1
  • Otto Kandler
    • 1
  1. 1.Botanisches Institut der Universität MünchenMünchen 19Federal Republic of Germany

Personalised recommendations