Advertisement

Archives of Microbiology

, Volume 115, Issue 1, pp 25–35 | Cite as

The demonstration of the existence of an interlayer between the cytoplasmic membrane and the cell wall proper of staphylococci

  • Peter Giesbrecht
  • Jörg Wecke
  • Bernhard Reinicke
  • Bernd Tesche
Article

Abstract

By disintegration of the cell wall of staphylococci a definite interlayer located between the cytoplasmic membrane and the cell wall proper could be demonstrated for the first time (=MW-interlayer). This MW-interlayer contains a sort of “cloddy” material in which clusters of embedded ring-like disks are hexagonally arranged in a crystal-like manner. The ring-like disks, approximately 40 Å in diameter and with center-to-center spacings of approximately 75 Å, lie in direct contact either with a rhombically arranged fibrillar network of the outer parts of the cytoplasmic membrane or they themselves are part of (or interconnected by) such an apparently rhombical network. The crystal-like arranged ring-like disks of the interlayer between the cytoplasmic membrane and the cell wall shall be called MW-particles in order to differentiate them from intramembrane particles and particles on the outer surface of the cell wall. At present, nothing more than speculation on the function of the MW-particles located within the space where final processes of the cell wall polymerization are taking place is possible.

Key words

staphylococci Cell wall organization Cytoplasmic membrane organization 

Abbreviations

MW

membrane-wall

EF

external face

PF

protoplasmic face

PS

protoplasmic surface

IM

intramembrane

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, U., Smith, P. R., Dubochet, J., Henry, C., Kellenberger, E.: A study of the structure of the T-layer of Bacillus brevis. J. Supramol. Struct. 1, 498–522 (1973)Google Scholar
  2. Bayer, M. E.: Ultrastructure and organization of the bacterial envelope. Ann. N.Y. Acad. Sci. 235, 6–28 (1974)Google Scholar
  3. Bayer, M. E., Koplow, J., Goldfine, H.: Alterations in envelope structure of heptose-deficient mutants of Escherichia coli as revealed by freeze-etching. Proc. Nat. Acad. Sci. U.S.A. 72, 5145–5149 (1975)Google Scholar
  4. Beveridge, T. J., Murray, R. G. E.: Surface arrays on the cell wall of Spirillum metamorphum. J. Bacteriol. 124, 1529–1544 (1975)Google Scholar
  5. Branton, D., Bullivant, S., Gilula, N. B., Karnovsky, M. J., Moor, H., Mühlethaler, K., Northcote, D. H., Packer, L., Satir, B., Satir, P., Speth, V., Staehelin, L. A., Steere, R. L., Weinstein, R.: Freeze-etching nomenclature. Science 190, 54–56 (1975)Google Scholar
  6. Braun, V., Hantke, K.: Biochemistry of bacterial cell envelopes. Ann. Rev. Biochem. 43, 89–121 (1974)Google Scholar
  7. Brown, R. M., Montezinos, D.: Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Nat. Acad. Sci. U.S.A. 73, 143–147 (1976)Google Scholar
  8. Costerton, J. W., Ingram, J. M., Cheng, K.-J.: Structure and function of the cell envelope of gram-negative bacteria. Bacteriol. Rev. 38, 87–110 (1974)Google Scholar
  9. Coulter, J. R., Mukherjee, T. M.: Electron microscopic localization of alpha toxin within the staphylococcal cell by ferritinlabeled antibody. Infect. Immun. 4, 650–655 (1971)Google Scholar
  10. Dubochet, J., Engel, A.: Dark-field electron microscopy of biomacromolecules. Proc. Sixth Europ. Congr. Electron Microscopy, Vol. 2 (Y. Ben-Shaul, ed.), pp. 134–135. Jerusalem: TAL-International Publishing Company 1976Google Scholar
  11. Fiedler, F., Mauck, J., Glaser, L.: Problems in cell wall assembly. Ann. N.Y. Acad. Sci. 235, 198–209 (1974)Google Scholar
  12. Fiil, A., Branton, D.: Changes in the plasma membrane of Escherichia coli during magnesium starvation. J. Bacteriol. 98, 1320–1327 (1979)Google Scholar
  13. Fitz-James, P. C.: Studies on the elongation of bacterial cell wall peptidoglycan and its inhibition by penicillin. Ann. N.Y. Acad. Sci. 235, 345–347 (1974)Google Scholar
  14. Giesbrecht, P.: Zur Darstellung der DNA von Bakterien und plastischer biologischer Strukturen mit Hilfe der Gefrierätzung. Zentralbl. Bakteriol. Parasitenkd. Infektionskrankh. Hyg. Abt. I. Orig. 207, 198–221 (1968)Google Scholar
  15. Giesbrecht, P.: The most important fine structures of bacteria in electron microscope pictures. In: Pictorial atlas of pathogenic microorganisms, Vol. III (G. Henneberg, ed.), pp. 1–141. Stuttgart: G. Fischer 1969Google Scholar
  16. Giesbrecht, P., Drews, G.: Die “Kernstrukturen” der Bakterien und ihre Beziehungen zu denen der “Mesokaryonten”. In: Die Zelle. Struktur und Funktion, 3. Aufl (H. Metzner, ed.). Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH 1977 (in press)Google Scholar
  17. Giesbrecht, P., Wecke, J., Reinicke, B.: On the morphogenesis of the cell wall of staphylococci. Int. Rev. Cytol. 44, 225–317 (1976a)Google Scholar
  18. Giesbrecht, P., Wecke, J., Reinicke, B.: Contribution to the mode of action of bactericidal and bacteriostatic antibiotics. Proc. Sixth Europ. Congr. Electron Microscopy, Vol. 2 (Y. Ben-Shaul, ed.), pp. 555–557. Jerusalem: TAL-International Publishing Company 1976bGoogle Scholar
  19. Gilleland, H. E., Stinnett, J. D., Roth, I. L., Eagon, R. G.: Freezeetch study of Pseudomonas aeruginosa: localization within the cell wall of an ethylene-diaminetetraacetate-extractable component. J. Bacteriol. 113, 417–432 (1973)Google Scholar
  20. Glauert, A. M., Thornley, M. J., Thorne, K. J. I., Sleytr, U. B.: The surface structure of bacteria. In: Microbial ultrastructure (R. Fuller, D. W. Lovelock, eds.), pp. 31–47. Soc. Appl. Bact. Techn. Ser. 10. London: Academic Press 1976Google Scholar
  21. Glenn, A. R.: Production of extracellular proteins by bacteria. Ann. Rev. Microbiol. 30, 41–62 (1976)Google Scholar
  22. Golecki, J. R.: Studies on ultrastructure and composition of cell walls of the cyanobacterium Anacystis nidulans. Arch. Microbiol. 114, 35–41 (1977)Google Scholar
  23. Golecki, J. R., Drews, G.: Zur Struktur der Blaualgen-Zellwand. Gefrierätzuntersuchungen an normalen und extrahierten Zellwänden von Anabaena variabilis. Cytobiologie 8, 213–227 (1974)Google Scholar
  24. Van Gool, A. P., Nanninga, N.: Fracture faces in the cell envelope of Escherichia coli. J. Bacteriol. 108, 474–481 (1971)Google Scholar
  25. Gross, H., Bas, E., Kübler, O., Moor, H.: An experimental system for freezefracturing in ultra high vacuum at temperatures to-196°C. Proc. Sixth Europ. Congr. Electron Microscopy, Vol. 1 (D. G. Brandon, ed.), pp. 402–404. Jerusalem: TAL-International Publishing Company 1976Google Scholar
  26. Haddock, B. A., Jones, C. W.: Bacterial respiration. Bacteriol. Rev. 41, 47–99 (1977)Google Scholar
  27. Harold, F. M.: Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36, 172–230 (1972)Google Scholar
  28. Haschemeyer, R. H., de Harven, E.: Electron microscopy of enzymes. Ann. Rev. Biochem. 43, 279–301 (1974)Google Scholar
  29. Heppel, L. A.: The concept of periplasmic enzymes. In: Structure and function of biological membranes (L. I. Rothfield, ed.), pp. 233–247. New York: Academic Press 1971Google Scholar
  30. Holt, S. C., Leadbetter, E. R.: Comparative ultractructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol. Rev. 33, 346–378 (1969)Google Scholar
  31. Houwink, A. L.: A macromolecular mono-layer in the cell wall of Spirillum spec. Biochim. Biophys. Acta 10, 360–366 (1953)Google Scholar
  32. Inouye, M.: A three-dimensional molecular assembly model of a lipoprotein from the Escherichia coli outer membrane. Proc. Nat. Acad. Sci. U.S.A. 71, 2396–2400 (1974)Google Scholar
  33. Joseph, R., Shockman, G. D.: Autolytic formation of protoplasts (autoplasts) of Streptococcus faecalis: location of active and latent autolysin. J. Bacteriol. 127, 1482–1493 (1976)Google Scholar
  34. Kistler, J., Aebi, U., Kellenberger, E.: Freeze-drying and shadowing a two-dimensional periodic specimen. J. Ultrastruct. Res. 59, 76–86 (1977).Google Scholar
  35. Leive, L. (ed.): Bacterial membranes and walls. New York: Marcel Dekker Inc. 1973Google Scholar
  36. Lickfeld, K. G.: Der frostgeätzte Bakterienkern. Z. Zellforsch. Mikrosk. Anat. 88, 560–564 (1968)Google Scholar
  37. Matile, P.: Properties of the purified membranes of yeast. FEBS Symposium 20, 39–49 (1970)Google Scholar
  38. Mirelman, D., Bracha, R., Sharon, N.: Studies on the elongation of bacterial cell wall peptidoglycan and its inhibition by penicillin. Ann. N.Y. Acad. Sci. 235, 326–347 (1974)Google Scholar
  39. Moor, H.: Die Gefrier-Fixation lebender Zellen und ihre Anwendung in der Elektronenmikroskopie. Z. Zellforsch. Mikrosk. Anat. 62, 546–580 (1964)Google Scholar
  40. Moor, H., Mühlethaler, K.: Fine structure in frozen-etched yeast cells. J. Cell Biol. 17, 609–628 (1963)Google Scholar
  41. Morioka, H.: Electron microscopic studies on membrane system of Staphylococcus aureus by means of thin sectioning and freezereplica techniques. J. Electron Microsc. 25, 271–281 (1976) units. J. Infect. Dis. 133 suppl, S31–S40 (1976)Google Scholar
  42. Morioka, H., Suganuma, A., Yokota, Y.: Ultrastructure of staphylococci after freeze-etching. J. Electron Microsc. 22, 255–266 (1973)Google Scholar
  43. Murray, R. G. E.: On the cell wall structure of Spirillum serpens. Canad. J. Microbiol. 9, 381–392 (1963)Google Scholar
  44. Nanninga, N.: Preservation of the ultrastructure of Bacillus subtilis by chemical fixation as verified by freeze-etching. J. Cell Biol. 42, 733–744 (1969)Google Scholar
  45. Nanninga, N.: Uniqueness and location of the fracture plane in the plasma membrane of Bacillus subtilis. J. Cell Biol. 49, 564–570 (1971)Google Scholar
  46. Necas, O., Svoboda, A.: Regeneration of yeast protoplasts. A freeze-etching study. Z. Allg. Mikrobiol. 16, 615–625 (1976)Google Scholar
  47. Niedermeyer, W., Moor, H.: The effect of glycerol on the structure of membranes: a freeze-etch study. Proc. Sixth Europ. Congr. Electron Microscopy, Vol. 2 (Y. Ben-Shaul, ed.), pp. 108–110. Jerusalem: TAL-International Publishing 1976Google Scholar
  48. Novotny, P., Short, J. A., Walker, P. D.: An electron-microscope study of naturally occurring and cultured cells of Neisseria gonorrhoeae. J. Med. Microbiol. 8, 413–427 (1975)Google Scholar
  49. Ohtomo, N., Muraoka, T., Tashiro, A., Zinnaka, Y., Amako, K.: Size and structure of the cholera toxin molecule and its subunits. J. Infect. Dis. 133, Suppl., 531–540 (1976)Google Scholar
  50. Pinto da Silva, P., Branton, D.: Membrane splitting in freeze-etching. Covalently bound ferritin as a membrane marker. J. Cell Biol. 45, 598–605 (1970)Google Scholar
  51. Pooley, H. M., Shockman, G. D.: Relationship between the latent and the active form of the autolytic enzyme of Streptococcus faecalis. J. Bacteriol. 100, 617–624 (1969)Google Scholar
  52. Robinson, D. G., Preston, R. D.: Plasmalemma structure in relation to microfibril biosynthesis in Oocystis. Planta 104, 234–246 (1972)Google Scholar
  53. Roland, J. C.: The relationship between the plasmalemma and plant cell wall. Int. Rev. Cytol. 36, 45–92 (1973)Google Scholar
  54. Roland, J. C., Pilet, P. E.: Amplications de plasmalemme et de la parois dans la croissance des cellules végétales. Experientia 30, 441–451 (1974)Google Scholar
  55. Ryabova, I. D., Skopinskaja, S. N., Tarachowskij, J. S., Borosjagin, B. L.: Untersuchung der biochemischen und ultrastrukturellen Eigenschaften der Membranen von Streptococcus faecalis. Biokhimiva 41, 1263–1271 (1976)Google Scholar
  56. Salton, M. R. J.: Membrane associated enzymes in bacteria. In: Advances in microbial physiology, Vol. 11 (A. H. Rose, D. W. Tempest, eds.), pp. 213–283. London: Academic Press 1974Google Scholar
  57. Salton, M. R. J., Owen, P.: Bacterial membrane structure. Ann. Rev. Microbiol. 30, 451–482 (1976)Google Scholar
  58. Schallehn, G., Wecke, J.: Zur Feinstruktur der Zellwand von Clostridium perfringens, Cl. septicum und Cl. novyi. Zentralbl. Bakteriol. Parasitenkd. Infektionskrankh. Hyg. Abt. I Orig. A 228, 63–71 (1974)Google Scholar
  59. Schuhardt, V. T., Klesius, P. H.: Osmotic fragility and viability of lysostaphin-induced staphylococcal spheroplasts. J. Bacteriol. 96, 734–737 (1968)Google Scholar
  60. Shockman, G. D., Pooley, H. M., Thompson, J. S.: The autolytic enzyme system of Streptococcus faecalis. III. The localization of the autolysin at the sites of cell wall synthesis. J. Bacteriol. 94, 1525–1530 (1967)Google Scholar
  61. Sleytr, U. B.: Fracture faces in intact cells and protoplasts of Bacillus stearothermophilus. A study by conventional freeze-etching and freeze-etching of corresponding fracture moieties. Protoplasma 71, 295–312 (1970)Google Scholar
  62. Sleytr, U. B.: Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J. Ultrastruct. Res. 55, 360–377 (1976)Google Scholar
  63. Sleytr, U. B., Adam, H., Klaushofer, H.: Die Feinstruktur der Zellwand und Cytoplasmamembran von Clostridium nigrificans, dargestellt mit Hilfe der Gefrierätz- und Ultradünnschnitt-Technik. Arch. Mikrobiol. 66, 40–58 (1969)Google Scholar
  64. Sleytr, U. B., Thornley, M. J., Glauert, A. M.: Location of the fracture faces within the cell envelope of Acinetobacter species strain MJT/F5/5. J. Bacteriol. 118, 693–707 (1974)Google Scholar
  65. Staehelin, L. A.: Ultrastructural changes of the plasmalemma and the cell wall during the life cycle of Cyanidium caldarium. Proc. R. Soc. London, Ser. B 171, 249–259 (1968)Google Scholar
  66. Tesche, B.: Elektronenstoß-Verdampfer mit geringem Leistungsbedarf für die Herstellung dünner Schichten aus hochschemelzenden Materialien. Vak.-Tech. 24, 104–110 (1975)Google Scholar
  67. Wecke, J., Reinicke, B., Schallehn, G.: Remarkable differences in the ultrastructure of the cell wall of toxigenic Clostridia. Proc. Eighth Internat. Congr. Electron Microscopy, Vol. II (J. V. Sanders, D. J. Goodchild, eds.), p. 644. Canberra: The Australian Academy of Science, Canberra, ACT, Australia 1974Google Scholar
  68. Weston, A., Ward, J. B., Perkins, H. R.: Biosynthesis of peptidoglycan in wall plus membrane preparations from Micrococcus luteus: direction of chain extension, length of chains, and effect of penicillin on cross-linking. J. Gen. Microbiol. 99, 171–181 (1977)Google Scholar
  69. Willison, J. H. M., Cocking, E. C.: Microbibril synthesis at the surfaces of isolated tobacco mesophil protoplasts. A freezeetch study. Protoplasma 84, 147–159 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Peter Giesbrecht
    • 1
  • Jörg Wecke
    • 1
  • Bernhard Reinicke
    • 1
  • Bernd Tesche
    • 2
  1. 1.Robert Koch-Institut des BundesgesundheitsamtesBerlin 65
  2. 2.Institut für Elektronenmikroskopie des Fritz Haber-Institutes der Max-Planck-GesellschaftBerlin

Personalised recommendations