Advertisement

Archives of Microbiology

, Volume 124, Issue 2–3, pp 197–203 | Cite as

The enzymes of the ammonia assimilation in Pseudomonas aeruginosa

  • Dick B. Janssen
  • Huub J. M. op den Camp
  • Pieter J. M. Leenen
  • Chris van der Drift
Article

Abstract

Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen while synthesis of the enzyme was repressed and that present was adenylylated in cultures with excess nitrogen.

NADP-and NAD-dependent glutamate dehydrogenase could be separated by column chromatography and showed molecular weights of 110,000 and 220,000, respectively. Synthesis of the NADP-dependent glutamate dehydrogenase is repressed under nitrogen limitation and by growth on glutamate. In contrast, NAD-dependent glutamate dehydrogenase is derepressed by glutamate. Glutamate synthase is repressed by glutamate but not by excess nitrogen.

Key words

Glutamine synthetase Glutamate synthase Glutamate dehydrogenase Ammonia assimilation Pseudomonas aeruginosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, R. A., Janssen, K. A., Resnick, A. D., Blumenberg, M., Foor, F., Magasanik, B.: Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J. Bacteriol. 129, 1001–1009 (1977)Google Scholar
  2. Brenchley, J. E., Baker, C. A., Patil, L. G.: Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium. J. Bacteriol. 124, 182–189 (1975)Google Scholar
  3. Brenchley, J. E., Prival, M. J., Magasanik, B.: Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J. Biol. Chem. 248, 6122–6128 (1973)Google Scholar
  4. Brown, C. M., Macdonald-Brown, D. S., Stanley, S. O.: The mechanisms of nitrogen assimilation in Pseudomonads. Antonie van Leeuwenhoek J. Microbiol. Serol. 39, 89–98 (1973)Google Scholar
  5. Brown, C. M., Herbert, R. A.: Ammonia assimilation in purple and green sulphur bacteria. FEMS Lett. 1, 39–42 (1977a)Google Scholar
  6. Brown, C. M., Herbert, R. A.: Ammonia assimilation in members of the Rhodospirillaceae. FEMS Lett. 1, 43–46 (1977b)Google Scholar
  7. Friedrich, B., Magasanik, B.: Urease of Klebsiella aerogenes: control of its synthesis by glutamine synthetase. J. Bacteriol. 131, 446–452 (1977)Google Scholar
  8. Kleinschmidt, J. A., Kleiner, D.: The glutamine synthetase from Azotobacter vinelandii: Purification, characterization, regulation and localization. Eur. J. Biochem. 89, 51–60 (1978)Google Scholar
  9. Krämer, J.: NAD and NADP-dependent glutamate dehydrogenase in Hydrogenomonas H 16. Arch. Mikrobiol. 71, 226–234 (1970)Google Scholar
  10. LéJohn, H. B., McCrea, B.-E.: Evidence for two species of glutamate dehydrogenases in Thiobacillus novellus. J. Bacteriol. 95, 87–94 (1968)Google Scholar
  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  12. Magasanik, B., Prival, M. J., Brenchley, J. E., Tyler, B. M., DeLeo, A. B., Streicher, S. L., Bender, R. A., Paris, C. G.: Glutamine synthetase as regulator of enzyme synthesis. Curr. Top. Cell. Regul. 8, 119–138 (1974)Google Scholar
  13. Meers, J. L., Tempest, D. W., Brown, C. M.: ‘Glutamine (amide): 2-oxoglutarate aminotransferase oxidoreductase (NADP)’, an enzyme involved in the synthesis of glutamate by some bacteria. J. Gen. Microbiol. 64, 187–194 (1970)Google Scholar
  14. Miller, R. E., Stadtman, E. R.: Glutamate synthase from Escherichia coli. An iron-sulfide flavoprotein. J. Biol. Chem. 247, 7407–7419 (1972)Google Scholar
  15. Nagatani, H., Shimizu, M., Valentine, R. C.: The mechanism of ammonia assimilation in nitrogen fixing bacteria. Arch. Mikrobiol. 79, 164–175 (1971)Google Scholar
  16. Nyberg, K., Clarke, P. H.: Glutamine synthetase activities of cultures of Pseudomonas aeruginosa grown in minimal media with histidine, nitrate or ammonium sulphate as the nitrogen source. J. Gen. Microbiol. 107, 193–197 (1978)Google Scholar
  17. Potts, J. R., Clarke, P. H.: The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa. J. Gen. Microbiol. 93, 377–387 (1976)Google Scholar
  18. Prival, M. J., Brenchley, J. E., Magasanik, B.: Glutamine synthetase and the regulation of histidase formation in Klebsiella aerogenes. J. Biol. Chem. 248, 4334–4344 (1973)Google Scholar
  19. Pulman, D., Johnson, B.: The enzymes of ammonia assimilation and their control in members of the genus Erwinia. J. Gen. Microbiol. 106, 137–143 (1978)Google Scholar
  20. Resnick, A. D., Magasanik, B.: l-asparaginase of Klebsiella aerogenes. Activation of its synthesis by glutamine synthetase. J. Biol. Chem. 251, 2722–2728 (1976)Google Scholar
  21. Richard, C.: Mesure de l'activité uréasique des Proteus au moyen de la réaction phenol-hypochlorite de Berthelot. Ann. Inst. Pasteur 109, 516–524 (1965)Google Scholar
  22. Rijnierse, V. F. M., van der Drift, C.: Inactivation of allantoinase of Pseudomonas aeruginosa in vivo. Arch. Microbiol. 96, 319–328 (1974)Google Scholar
  23. Senior, P. J.: Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: Studies with the continuous-culture technique. J. Bacteriol. 123, 407–418 (1975)Google Scholar
  24. Shapiro, B. M., Stadtman, E. R.: Glutamine synthetase (Escherichia coli). In: Methods in Enzymology, Vol. 17A (S. P. Colowick, N. O. Kaplan, eds.), pp. 910–922. New York, London: Academic Press 1970Google Scholar
  25. Siedel, J., Shelton, E.: Purification and properties of Azotobacter vinelandii glutamine synthetase. Arch. Biochem. Biophys. 192, 214–224 (1979)Google Scholar
  26. Stadtman, E. R., Shapiro, B. M., Kingdon, H. S., Woolfolk, C. A., Hubbard, J. S.: Cellular regulation of glutamine synthetase activity in Escherichia coli. Adv. Enz. Regul. 6, 257–289 (1968)Google Scholar
  27. Stadtman, E. R., Ginsburg, A., Ciardi, J. E., Yeh, J., Hennig, S. B., Shapiro, B. M.: Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylylation and deadenylylation reactions. Adv. Enz. Regul. 8, 99–118 (1970)Google Scholar
  28. Streicher, S. L., Shanmugam, K. T., Ausubel, F., Morandi, C., Goldberg, R. B.: Regulation of nitrogen fixation in Klebsiella pneumoniae: Evidence for a role of glutamine synthetase as a regulator of nitrogenase synthesis. J. Bacteriol. 120, 815–821 (1974)Google Scholar
  29. Tronick, S. R., Ciardi, J. E., Stadtman, E. R.: Comparative biochemical and immunological studies of bacterial glutamine synthetases. J. Bacteriol. 115, 858–868 (1973)Google Scholar
  30. Tyler, B.: Regulation of the assimilation of nitrogen compounds. Ann. Rev. Biochem. 47, 1127–1162 (1978)Google Scholar
  31. Tyler, B. M., DeLeo, A. B., Magasanik, B.: Activation of transcription of hut DNA by glutamine synthetase. Proc. Nat. Acad. Sci. USA 71, 225–229 (1974)Google Scholar
  32. Vogels, G. D., van der Drift, C.: Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40, 403–468 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Dick B. Janssen
    • 1
  • Huub J. M. op den Camp
    • 1
  • Pieter J. M. Leenen
    • 1
  • Chris van der Drift
    • 1
  1. 1.Department of Microbiology, Faculty of ScienceUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations